RandomizedSearchCV
很有用,因为它不会尝试列出的所有参数。相反,它显示了一些并对其进行了测试以查看哪个更好。
但是我怎么知道测试了哪些参数?
例如,在下面的脚本中,测试了n_estimators
,max_features
和max_depth
的哪些组合? n_estimator = 10
经过测试了吗? n_estimator = 100
经过测试了吗?
rf = RandomForestRegressor()
n_estimators = [int(x) for x in np.linspace(start=10, stop=2000, num=200)]
max_features = ["auto", "sqrt", "log2"]
max_depth = [int(x) for x in np.linspace(5, 500, num=100)]
random_grid = {
"n_estimators": n_estimators,
"max_features": max_features,
"max_depth": max_depth,
}
randomsearch = RandomizedSearchCV(rf, param_distributions=random_grid, cv=5)
randomsearch.fit(X_train, y_train)
答案 0 :(得分:1)
属性class DummyTestClass(unittest.TestCase):
my_guard = False
is_this_the_cicd_jenkins_machine = SomeClass.is_this_the_cicd_jenkins_machine()
@attr(testsuite='SUITE_1')
def test_a_change_my_guard(self):
# purpose of test is only to change the guard so that test b will be run if testsute SUITE_1 is selected form Jenkins
print('test a')
globals()['my_guard'] = True
# my_guard = True # also trying this, still my_guard is still false in test_b
@unittest.skipIf(my_guard is False, 'skip test_b')
# @unittest.skipIf(globals()['my_guard'] is False, 'skip test b') compilation error
# @unittest.skipIf(is_this_the_cicd_jenkins_machine, ‘script skipped’) # ugly solution
@attr(testsuite='SUITE_1')
def test_b(self):
# controlled by guard
print('test b')
@attr(testsuite='SUITE_1')
def test_c_to_be_run_in_suite_1(self):
print('test c')
中提供了许多有关搜索的信息。将该dict导入数据框,您将为每个测试的超参数组合获得一行,其中包含超参数值,折叠和平均得分,可选的训练得分,训练时间等。