让我们考虑以下CSV文件test.csv
:
"x","y","A","B"
8000000000,"0,1","0.113948,0.113689",0.114042
8000000000,"0,1","0.114063,0.113823",0.114175
8000000000,"0,1","0.114405,0.114366",0.114524
8000000000,"0,1,2,3","0.167543,0.172369,0.419197,0.427285",0.427576
8000000000,"0,1,2,3","0.167784,0.172145,0.418624,0.426492",0.428736
8000000000,"0,1,2,3","0.168121,0.172729,0.419768,0.427467",0.428578
我的目标是按"x"
和"y"
列对行进行分组,并计算"A"
和"B"
列的算术平均值。
我的第一种方法是在熊猫中使用groupby()
和mean()
的组合:
import pandas
if __name__ == "__main__":
data = pandas.read_csv("test.csv", header=0)
data = data.groupby(["x", "y"], as_index=False).mean()
print(data)
运行此脚本将产生以下输出:
x y B
0 8000000000 0,1 0.114247
1 8000000000 0,1,2,3 0.428297
我们可以看到,实现单值列"B"
的目标非常简单。但是,省略了列"A"
。相反,我想在列"A"
中使用一个字符串,其中包含每个逗号分隔值的算术平均值。所需的输出应如下所示:
x y A B
0 8000000000 0,1 0.114139,0.113959 0.114247
1 8000000000 0,1,2,3 0.167816,0.172414,0.419196,0.427081 0.428297
有人知道怎么做吗?
答案 0 :(得分:4)
您可以创建一个自定义聚合函数,将这些字符串解析为列表,找到每列的平均值,然后将其格式化为字符串:
def string_mean(rows):
data_list = []
for row in rows:
data_list.append([float(item) for item in row.split(",")])
data = np.array(data_list)
return ",".join([f"{item:.6f}" for item in data.mean(axis=0)])
df.groupby(["x", "y"], as_index=False).agg({"A": string_mean, "B": "mean"})
返回
x y A B
0 8000000000 0,1 0.114139,0.113959 0.114247
1 8000000000 0,1,2,3 0.167816,0.172414,0.419196,0.427081 0.428297
请注意,如果您A中的字符串在单个组中具有不同的列数,则会出错。
您可能可以在相当大的程度上清除我的功能