现在我在框架中有一个中央模块,它使用Python 2.6 multiprocessing
module生成多个进程。因为它使用multiprocessing
,所以存在模块级多处理感知日志LOG = multiprocessing.get_logger()
。根据{{3}},此记录器具有进程共享锁,这样您就不会在sys.stderr
(或任何文件句柄)中通过让多个进程同时写入它来解决问题。
我现在遇到的问题是框架中的其他模块不支持多处理。我看到它的方式,我需要使这个中央模块的所有依赖使用多处理感知日志记录。这在框架内的中很烦人,更不用说框架的所有客户端了。有没有我不想的替代方案?
答案 0 :(得分:105)
我刚才写了一个我自己的日志处理程序,它只是通过管道将所有内容提供给父进程。我只测试了十分钟,但似乎工作得很好。
(注意:这是硬编码到RotatingFileHandler
,这是我自己的用例。)
现在使用队列来正确处理并发,并且还可以正确地从错误中恢复。我现在已经在生产中使用它几个月了,下面的当前版本没有问题。
from logging.handlers import RotatingFileHandler
import multiprocessing, threading, logging, sys, traceback
class MultiProcessingLog(logging.Handler):
def __init__(self, name, mode, maxsize, rotate):
logging.Handler.__init__(self)
self._handler = RotatingFileHandler(name, mode, maxsize, rotate)
self.queue = multiprocessing.Queue(-1)
t = threading.Thread(target=self.receive)
t.daemon = True
t.start()
def setFormatter(self, fmt):
logging.Handler.setFormatter(self, fmt)
self._handler.setFormatter(fmt)
def receive(self):
while True:
try:
record = self.queue.get()
self._handler.emit(record)
except (KeyboardInterrupt, SystemExit):
raise
except EOFError:
break
except:
traceback.print_exc(file=sys.stderr)
def send(self, s):
self.queue.put_nowait(s)
def _format_record(self, record):
# ensure that exc_info and args
# have been stringified. Removes any chance of
# unpickleable things inside and possibly reduces
# message size sent over the pipe
if record.args:
record.msg = record.msg % record.args
record.args = None
if record.exc_info:
dummy = self.format(record)
record.exc_info = None
return record
def emit(self, record):
try:
s = self._format_record(record)
self.send(s)
except (KeyboardInterrupt, SystemExit):
raise
except:
self.handleError(record)
def close(self):
self._handler.close()
logging.Handler.close(self)
答案 1 :(得分:57)
处理这种非侵入性的唯一方法是:
select
,对可用的日志条目执行merge-sort,并刷新到集中日志。重复。)答案 2 :(得分:19)
另一个替代方案可能是logging
package中的各种非基于文件的日志记录处理程序:
SocketHandler
DatagramHandler
SyslogHandler
(和其他人)
通过这种方式,您可以轻松地在某个地方安装一个日志守护程序,您可以安全地写入并正确处理结果。 (例如,一个简单的套接字服务器,它只是取消消息并将其发送到自己的旋转文件处理程序。)
SyslogHandler
也会照顾你。当然,您可以使用自己的syslog
实例,而不是系统实例。
答案 3 :(得分:18)
python logging cookbook在这里有两个完整的例子:https://docs.python.org/3/howto/logging-cookbook.html#logging-to-a-single-file-from-multiple-processes
它使用text-decoration: none
,这是python 3.2中的新功能,但很容易从https://gist.github.com/vsajip/591589
每个进程都将其日志记录在QueueHandler
上,然后一个Queue
线程或进程(为每个进程提供一个示例)选择它们并将它们全部写入文件 - 没有损坏的风险或者说是装扮。
答案 4 :(得分:13)
保持日志记录和队列线程分离的其他变体。
"""sample code for logging in subprocesses using multiprocessing
* Little handler magic - The main process uses loggers and handlers as normal.
* Only a simple handler is needed in the subprocess that feeds the queue.
* Original logger name from subprocess is preserved when logged in main
process.
* As in the other implementations, a thread reads the queue and calls the
handlers. Except in this implementation, the thread is defined outside of a
handler, which makes the logger definitions simpler.
* Works with multiple handlers. If the logger in the main process defines
multiple handlers, they will all be fed records generated by the
subprocesses loggers.
tested with Python 2.5 and 2.6 on Linux and Windows
"""
import os
import sys
import time
import traceback
import multiprocessing, threading, logging, sys
DEFAULT_LEVEL = logging.DEBUG
formatter = logging.Formatter("%(levelname)s: %(asctime)s - %(name)s - %(process)s - %(message)s")
class SubProcessLogHandler(logging.Handler):
"""handler used by subprocesses
It simply puts items on a Queue for the main process to log.
"""
def __init__(self, queue):
logging.Handler.__init__(self)
self.queue = queue
def emit(self, record):
self.queue.put(record)
class LogQueueReader(threading.Thread):
"""thread to write subprocesses log records to main process log
This thread reads the records written by subprocesses and writes them to
the handlers defined in the main process's handlers.
"""
def __init__(self, queue):
threading.Thread.__init__(self)
self.queue = queue
self.daemon = True
def run(self):
"""read from the queue and write to the log handlers
The logging documentation says logging is thread safe, so there
shouldn't be contention between normal logging (from the main
process) and this thread.
Note that we're using the name of the original logger.
"""
# Thanks Mike for the error checking code.
while True:
try:
record = self.queue.get()
# get the logger for this record
logger = logging.getLogger(record.name)
logger.callHandlers(record)
except (KeyboardInterrupt, SystemExit):
raise
except EOFError:
break
except:
traceback.print_exc(file=sys.stderr)
class LoggingProcess(multiprocessing.Process):
def __init__(self, queue):
multiprocessing.Process.__init__(self)
self.queue = queue
def _setupLogger(self):
# create the logger to use.
logger = logging.getLogger('test.subprocess')
# The only handler desired is the SubProcessLogHandler. If any others
# exist, remove them. In this case, on Unix and Linux the StreamHandler
# will be inherited.
for handler in logger.handlers:
# just a check for my sanity
assert not isinstance(handler, SubProcessLogHandler)
logger.removeHandler(handler)
# add the handler
handler = SubProcessLogHandler(self.queue)
handler.setFormatter(formatter)
logger.addHandler(handler)
# On Windows, the level will not be inherited. Also, we could just
# set the level to log everything here and filter it in the main
# process handlers. For now, just set it from the global default.
logger.setLevel(DEFAULT_LEVEL)
self.logger = logger
def run(self):
self._setupLogger()
logger = self.logger
# and here goes the logging
p = multiprocessing.current_process()
logger.info('hello from process %s with pid %s' % (p.name, p.pid))
if __name__ == '__main__':
# queue used by the subprocess loggers
queue = multiprocessing.Queue()
# Just a normal logger
logger = logging.getLogger('test')
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(DEFAULT_LEVEL)
logger.info('hello from the main process')
# This thread will read from the subprocesses and write to the main log's
# handlers.
log_queue_reader = LogQueueReader(queue)
log_queue_reader.start()
# create the processes.
for i in range(10):
p = LoggingProcess(queue)
p.start()
# The way I read the multiprocessing warning about Queue, joining a
# process before it has finished feeding the Queue can cause a deadlock.
# Also, Queue.empty() is not realiable, so just make sure all processes
# are finished.
# active_children joins subprocesses when they're finished.
while multiprocessing.active_children():
time.sleep(.1)
答案 5 :(得分:12)
下面是另一个解决方案,重点关注来自谷歌的其他人(比如我)的简单性。记录应该很容易!仅限3.2或更高。
import multiprocessing
import logging
from logging.handlers import QueueHandler, QueueListener
import time
import random
def f(i):
time.sleep(random.uniform(.01, .05))
logging.info('function called with {} in worker thread.'.format(i))
time.sleep(random.uniform(.01, .05))
return i
def worker_init(q):
# all records from worker processes go to qh and then into q
qh = QueueHandler(q)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
logger.addHandler(qh)
def logger_init():
q = multiprocessing.Queue()
# this is the handler for all log records
handler = logging.StreamHandler()
handler.setFormatter(logging.Formatter("%(levelname)s: %(asctime)s - %(process)s - %(message)s"))
# ql gets records from the queue and sends them to the handler
ql = QueueListener(q, handler)
ql.start()
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
# add the handler to the logger so records from this process are handled
logger.addHandler(handler)
return ql, q
def main():
q_listener, q = logger_init()
logging.info('hello from main thread')
pool = multiprocessing.Pool(4, worker_init, [q])
for result in pool.map(f, range(10)):
pass
pool.close()
pool.join()
q_listener.stop()
if __name__ == '__main__':
main()
答案 6 :(得分:10)
通过使用处理程序,所有当前解决方案都与日志记录配置过于耦合。我的解决方案具有以下架构和功能:
multiprocessing.Queue
logging.Logger
(和已定义的实例)被修补以将所有记录发送到队列使用示例和输出的代码可以在以下要点中找到:https://gist.github.com/schlamar/7003737
答案 7 :(得分:7)
由于我们可以将多进程日志记录表示为多个发布者和一个订阅者(侦听器),因此使用ZeroMQ实现PUB-SUB消息传递确实是一种选择。
此外,PyZMQ模块(ZMQ的Python绑定)实现了PUBHandler,它是通过zmq.PUB套接字发布日志消息的对象。
有一个solution on the web,用于使用PyZMQ和PUBHandler从分布式应用程序进行集中式日志记录,可以轻松地在本地使用多个发布过程进行日志记录。
formatters = {
logging.DEBUG: logging.Formatter("[%(name)s] %(message)s"),
logging.INFO: logging.Formatter("[%(name)s] %(message)s"),
logging.WARN: logging.Formatter("[%(name)s] %(message)s"),
logging.ERROR: logging.Formatter("[%(name)s] %(message)s"),
logging.CRITICAL: logging.Formatter("[%(name)s] %(message)s")
}
# This one will be used by publishing processes
class PUBLogger:
def __init__(self, host, port=config.PUBSUB_LOGGER_PORT):
self._logger = logging.getLogger(__name__)
self._logger.setLevel(logging.DEBUG)
self.ctx = zmq.Context()
self.pub = self.ctx.socket(zmq.PUB)
self.pub.connect('tcp://{0}:{1}'.format(socket.gethostbyname(host), port))
self._handler = PUBHandler(self.pub)
self._handler.formatters = formatters
self._logger.addHandler(self._handler)
@property
def logger(self):
return self._logger
# This one will be used by listener process
class SUBLogger:
def __init__(self, ip, output_dir="", port=config.PUBSUB_LOGGER_PORT):
self.output_dir = output_dir
self._logger = logging.getLogger()
self._logger.setLevel(logging.DEBUG)
self.ctx = zmq.Context()
self._sub = self.ctx.socket(zmq.SUB)
self._sub.bind('tcp://*:{1}'.format(ip, port))
self._sub.setsockopt(zmq.SUBSCRIBE, "")
handler = handlers.RotatingFileHandler(os.path.join(output_dir, "client_debug.log"), "w", 100 * 1024 * 1024, 10)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(asctime)s;%(levelname)s - %(message)s")
handler.setFormatter(formatter)
self._logger.addHandler(handler)
@property
def sub(self):
return self._sub
@property
def logger(self):
return self._logger
# And that's the way we actually run things:
# Listener process will forever listen on SUB socket for incoming messages
def run_sub_logger(ip, event):
sub_logger = SUBLogger(ip)
while not event.is_set():
try:
topic, message = sub_logger.sub.recv_multipart(flags=zmq.NOBLOCK)
log_msg = getattr(logging, topic.lower())
log_msg(message)
except zmq.ZMQError as zmq_error:
if zmq_error.errno == zmq.EAGAIN:
pass
# Publisher processes loggers should be initialized as follows:
class Publisher:
def __init__(self, stop_event, proc_id):
self.stop_event = stop_event
self.proc_id = proc_id
self._logger = pub_logger.PUBLogger('127.0.0.1').logger
def run(self):
self._logger.info("{0} - Sending message".format(proc_id))
def run_worker(event, proc_id):
worker = Publisher(event, proc_id)
worker.run()
# Starting subscriber process so we won't loose publisher's messages
sub_logger_process = Process(target=run_sub_logger,
args=('127.0.0.1'), stop_event,))
sub_logger_process.start()
#Starting publisher processes
for i in range(MAX_WORKERS_PER_CLIENT):
processes.append(Process(target=run_worker,
args=(stop_event, i,)))
for p in processes:
p.start()
答案 8 :(得分:6)
我也喜欢zzzeek的回答,但安德烈是正确的,需要一个队列来防止乱码。我对管道运气不错,但确实看到了一些有点预期的花边。实现它比我想象的要困难,特别是由于在Windows上运行,对全局变量和内容有一些额外的限制(参见:How's Python Multiprocessing Implemented on Windows?)
但是,我终于开始工作了。这个例子可能并不完美,欢迎提出意见和建议。它也不支持设置格式化程序或除根记录程序之外的任何其他内容。基本上,您必须使用队列重新启动每个池进程中的记录器,并在记录器上设置其他属性。
同样,欢迎任何有关如何使代码更好的建议。我当然不知道所有的Python技巧: - )
import multiprocessing, logging, sys, re, os, StringIO, threading, time, Queue
class MultiProcessingLogHandler(logging.Handler):
def __init__(self, handler, queue, child=False):
logging.Handler.__init__(self)
self._handler = handler
self.queue = queue
# we only want one of the loggers to be pulling from the queue.
# If there is a way to do this without needing to be passed this
# information, that would be great!
if child == False:
self.shutdown = False
self.polltime = 1
t = threading.Thread(target=self.receive)
t.daemon = True
t.start()
def setFormatter(self, fmt):
logging.Handler.setFormatter(self, fmt)
self._handler.setFormatter(fmt)
def receive(self):
#print "receive on"
while (self.shutdown == False) or (self.queue.empty() == False):
# so we block for a short period of time so that we can
# check for the shutdown cases.
try:
record = self.queue.get(True, self.polltime)
self._handler.emit(record)
except Queue.Empty, e:
pass
def send(self, s):
# send just puts it in the queue for the server to retrieve
self.queue.put(s)
def _format_record(self, record):
ei = record.exc_info
if ei:
dummy = self.format(record) # just to get traceback text into record.exc_text
record.exc_info = None # to avoid Unpickleable error
return record
def emit(self, record):
try:
s = self._format_record(record)
self.send(s)
except (KeyboardInterrupt, SystemExit):
raise
except:
self.handleError(record)
def close(self):
time.sleep(self.polltime+1) # give some time for messages to enter the queue.
self.shutdown = True
time.sleep(self.polltime+1) # give some time for the server to time out and see the shutdown
def __del__(self):
self.close() # hopefully this aids in orderly shutdown when things are going poorly.
def f(x):
# just a logging command...
logging.critical('function number: ' + str(x))
# to make some calls take longer than others, so the output is "jumbled" as real MP programs are.
time.sleep(x % 3)
def initPool(queue, level):
"""
This causes the logging module to be initialized with the necessary info
in pool threads to work correctly.
"""
logging.getLogger('').addHandler(MultiProcessingLogHandler(logging.StreamHandler(), queue, child=True))
logging.getLogger('').setLevel(level)
if __name__ == '__main__':
stream = StringIO.StringIO()
logQueue = multiprocessing.Queue(100)
handler= MultiProcessingLogHandler(logging.StreamHandler(stream), logQueue)
logging.getLogger('').addHandler(handler)
logging.getLogger('').setLevel(logging.DEBUG)
logging.debug('starting main')
# when bulding the pool on a Windows machine we also have to init the logger in all the instances with the queue and the level of logging.
pool = multiprocessing.Pool(processes=10, initializer=initPool, initargs=[logQueue, logging.getLogger('').getEffectiveLevel()] ) # start worker processes
pool.map(f, range(0,50))
pool.close()
logging.debug('done')
logging.shutdown()
print "stream output is:"
print stream.getvalue()
答案 9 :(得分:4)
截至2020年,似乎有一种更简单的多处理日志记录方式。
此功能将创建记录器。您可以在此处以及希望输出到的位置(文件,标准输出)设置格式:
def create_logger():
import multiprocessing, logging
logger = multiprocessing.get_logger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter(\
'[%(asctime)s| %(levelname)s| %(processName)s] %(message)s')
handler = logging.FileHandler('logs/your_file_name.log')
handler.setFormatter(formatter)
# this bit will make sure you won't have
# duplicated messages in the output
if not len(logger.handlers):
logger.addHandler(handler)
return logger
在初始化中实例化记录器:
if __name__ == '__main__':
from multiprocessing import Pool
logger = create_logger()
logger.info('Starting pooling')
p = Pool()
# rest of the code
现在,您只需要在需要记录日志的每个函数中添加此引用:
logger = create_logger()
并输出消息:
logger.info(f'My message from {something}')
希望这会有所帮助。
答案 10 :(得分:3)
只需在您的记录器实例的某处发布。这样,其他模块和客户端就可以使用您的API获取记录器而无需import multiprocessing
。
答案 11 :(得分:3)
我喜欢zzzeek的回答。我只是将管道替换为队列,因为如果多个线程/进程使用相同的管道端生成日志消息,它们将会出现乱码。
答案 12 :(得分:2)
如何将所有日志记录委派给另一个从队列中读取所有日志条目的进程?
LOG_QUEUE = multiprocessing.JoinableQueue()
class CentralLogger(multiprocessing.Process):
def __init__(self, queue):
multiprocessing.Process.__init__(self)
self.queue = queue
self.log = logger.getLogger('some_config')
self.log.info("Started Central Logging process")
def run(self):
while True:
log_level, message = self.queue.get()
if log_level is None:
self.log.info("Shutting down Central Logging process")
break
else:
self.log.log(log_level, message)
central_logger_process = CentralLogger(LOG_QUEUE)
central_logger_process.start()
只需通过任何多进程机制甚至继承来共享LOG_QUEUE,这一切都很好!
答案 13 :(得分:1)
我有一个类似于ironhacker的解决方案,除了我在我的一些代码中使用logging.exception并发现我需要格式化异常,然后将其传回队列,因为回溯不是可选择的:
class QueueHandler(logging.Handler):
def __init__(self, queue):
logging.Handler.__init__(self)
self.queue = queue
def emit(self, record):
if record.exc_info:
# can't pass exc_info across processes so just format now
record.exc_text = self.formatException(record.exc_info)
record.exc_info = None
self.queue.put(record)
def formatException(self, ei):
sio = cStringIO.StringIO()
traceback.print_exception(ei[0], ei[1], ei[2], None, sio)
s = sio.getvalue()
sio.close()
if s[-1] == "\n":
s = s[:-1]
return s
答案 14 :(得分:1)
下面是一个可以在Windows环境中使用的类,需要ActivePython。 您还可以继承其他日志处理程序(StreamHandler等)
class SyncronizedFileHandler(logging.FileHandler):
MUTEX_NAME = 'logging_mutex'
def __init__(self , *args , **kwargs):
self.mutex = win32event.CreateMutex(None , False , self.MUTEX_NAME)
return super(SyncronizedFileHandler , self ).__init__(*args , **kwargs)
def emit(self, *args , **kwargs):
try:
win32event.WaitForSingleObject(self.mutex , win32event.INFINITE)
ret = super(SyncronizedFileHandler , self ).emit(*args , **kwargs)
finally:
win32event.ReleaseMutex(self.mutex)
return ret
以下是一个演示用法的示例:
import logging
import random , time , os , sys , datetime
from string import letters
import win32api , win32event
from multiprocessing import Pool
def f(i):
time.sleep(random.randint(0,10) * 0.1)
ch = random.choice(letters)
logging.info( ch * 30)
def init_logging():
'''
initilize the loggers
'''
formatter = logging.Formatter("%(levelname)s - %(process)d - %(asctime)s - %(filename)s - %(lineno)d - %(message)s")
logger = logging.getLogger()
logger.setLevel(logging.INFO)
file_handler = SyncronizedFileHandler(sys.argv[1])
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
#must be called in the parent and in every worker process
init_logging()
if __name__ == '__main__':
#multiprocessing stuff
pool = Pool(processes=10)
imap_result = pool.imap(f , range(30))
for i , _ in enumerate(imap_result):
pass
答案 15 :(得分:1)
这是我的简单黑客/解决方法...不是最全面的,但我认为比我在写这篇文章之前找到的任何其他答案更容易修改和更容易阅读和理解:
import logging
import multiprocessing
class FakeLogger(object):
def __init__(self, q):
self.q = q
def info(self, item):
self.q.put('INFO - {}'.format(item))
def debug(self, item):
self.q.put('DEBUG - {}'.format(item))
def critical(self, item):
self.q.put('CRITICAL - {}'.format(item))
def warning(self, item):
self.q.put('WARNING - {}'.format(item))
def some_other_func_that_gets_logger_and_logs(num):
# notice the name get's discarded
# of course you can easily add this to your FakeLogger class
local_logger = logging.getLogger('local')
local_logger.info('Hey I am logging this: {} and working on it to make this {}!'.format(num, num*2))
local_logger.debug('hmm, something may need debugging here')
return num*2
def func_to_parallelize(data_chunk):
# unpack our args
the_num, logger_q = data_chunk
# since we're now in a new process, let's monkeypatch the logging module
logging.getLogger = lambda name=None: FakeLogger(logger_q)
# now do the actual work that happens to log stuff too
new_num = some_other_func_that_gets_logger_and_logs(the_num)
return (the_num, new_num)
if __name__ == '__main__':
multiprocessing.freeze_support()
m = multiprocessing.Manager()
logger_q = m.Queue()
# we have to pass our data to be parallel-processed
# we also need to pass the Queue object so we can retrieve the logs
parallelable_data = [(1, logger_q), (2, logger_q)]
# set up a pool of processes so we can take advantage of multiple CPU cores
pool_size = multiprocessing.cpu_count() * 2
pool = multiprocessing.Pool(processes=pool_size, maxtasksperchild=4)
worker_output = pool.map(func_to_parallelize, parallelable_data)
pool.close() # no more tasks
pool.join() # wrap up current tasks
# get the contents of our FakeLogger object
while not logger_q.empty():
print logger_q.get()
print 'worker output contained: {}'.format(worker_output)
答案 16 :(得分:1)
对于可能需要此操作的人,我为multiprocessing_logging包编写了一个装饰器,该装饰器将当前进程的名称添加到日志中,这样就清楚了谁记录了什么。
它还运行install_mp_handler(),因此在创建池之前运行它变得毫无用处。
这使我可以看到哪个工作人员创建了哪些日志消息。
以下是带有示例的蓝图:
import sys
import logging
from functools import wraps
import multiprocessing
import multiprocessing_logging
# Setup basic console logger as 'logger'
logger = logging.getLogger()
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(logging.Formatter(u'%(asctime)s :: %(levelname)s :: %(message)s'))
logger.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
# Create a decorator for functions that are called via multiprocessing pools
def logs_mp_process_names(fn):
class MultiProcessLogFilter(logging.Filter):
def filter(self, record):
try:
process_name = multiprocessing.current_process().name
except BaseException:
process_name = __name__
record.msg = f'{process_name} :: {record.msg}'
return True
multiprocessing_logging.install_mp_handler()
f = MultiProcessLogFilter()
# Wraps is needed here so apply / apply_async know the function name
@wraps(fn)
def wrapper(*args, **kwargs):
logger.removeFilter(f)
logger.addFilter(f)
return fn(*args, **kwargs)
return wrapper
# Create a test function and decorate it
@logs_mp_process_names
def test(argument):
logger.info(f'test function called via: {argument}')
# You can also redefine undecored functions
def undecorated_function():
logger.info('I am not decorated')
@logs_mp_process_names
def redecorated(*args, **kwargs):
return undecorated_function(*args, **kwargs)
# Enjoy
if __name__ == '__main__':
with multiprocessing.Pool() as mp_pool:
# Also works with apply_async
mp_pool.apply(test, ('mp pool',))
mp_pool.apply(redecorated)
logger.info('some main logs')
test('main program')
答案 17 :(得分:1)
我想建议使用 logger_tt 库:https://github.com/Dragon2fly/logger_tt
multiporcessing_logging 库在我的 macOSX 上不起作用,而 logger_tt 可以。
答案 18 :(得分:1)
concurrent-log-handler 似乎完美地完成了这项工作。在 Windows 上测试。还支持 POSIX 系统。
ConcurrentRotatingFileHandler
实例。下面给出了示例函数 get_logger()
。multiprocessing.Process
子类,这意味着 run()
方法的开始。我这个例子,我会使用下面的文件结构
.
│-- child.py <-- For a child process
│-- logs.py <-- For setting up the logs for the app
│-- main.py <-- For a main process
│-- myapp.py <-- For starting the app
│-- somemodule.py <-- For an example, a "3rd party module using standard logging"
# child.py
import multiprocessing as mp
import time
from somemodule import do_something
class ChildProcess(mp.Process):
def __init__(self):
self.logger = None
super().__init__()
def run(self):
from logs import get_logger
self.logger = get_logger()
while True:
time.sleep(1)
self.logger.info("Child process")
do_something()
multiprocessing.Process
并简单地记录到文件文本“子进程”get_logger()
在 run()
内或子进程内的其他地方(不是模块级别或在 __init__()
}}。)这是必需的,因为 get_logger()
创建 ConcurrentRotatingFileHandler
实例,并且每个进程都需要新实例。do_something
仅用于证明这适用于 3rd 方库代码,而该代码不知道您正在使用并发日志处理程序。# main.py
import logging
import multiprocessing as mp
import time
from child import ChildProcess
from somemodule import do_something
class MainProcess(mp.Process):
def __init__(self):
self.logger = logging.getLogger()
super().__init__()
def run(self):
from logs import get_logger
self.logger = get_logger()
self.child = ChildProcess()
self.child.daemon = True
self.child.start()
while True:
time.sleep(0.5)
self.logger.critical("Main process")
do_something()
multiprocessing.Process
。get_logger()
和 do_something()
的相同注释适用于子进程。# logs.py
import logging
import os
from concurrent_log_handler import ConcurrentRotatingFileHandler
LOGLEVEL = logging.DEBUG
def get_logger():
logger = logging.getLogger()
if logger.handlers:
return logger
# Use an absolute path to prevent file rotation trouble.
logfile = os.path.abspath("mylog.log")
logger.setLevel(LOGLEVEL)
# Rotate log after reaching 512K, keep 5 old copies.
filehandler = ConcurrentRotatingFileHandler(
logfile, mode="a", maxBytes=512 * 1024, backupCount=5, encoding="utf-8"
)
filehandler.setLevel(LOGLEVEL)
# create also handler for displaying output in the stdout
ch = logging.StreamHandler()
ch.setLevel(LOGLEVEL)
formatter = logging.Formatter(
"%(asctime)s - %(module)s - %(levelname)s - %(message)s [Process: %(process)d, %(filename)s:%(funcName)s(%(lineno)d)]"
)
# add formatter to ch
ch.setFormatter(formatter)
filehandler.setFormatter(formatter)
logger.addHandler(ch)
logger.addHandler(filehandler)
return logger
ConcurrentRotatingFileHandler
。每个进程都需要一个新的 ConcurrentRotatingFileHandler 实例。ConcurrentRotatingFileHandler
的所有参数在每个进程中都应该相同。# myapp.py
if __name__ == "__main__":
from main import MainProcess
p = MainProcess()
p.start()
logging
的第 3 方模块示例# somemodule.py
import logging
logger = logging.getLogger("somemodule")
def do_something():
logging.info("doing something")
2021-04-19 19:02:29,425 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:29,427 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:29,929 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:29,931 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:30,133 - child - INFO - Child process [Process: 76700, child.py:run(18)]
2021-04-19 19:02:30,137 - somemodule - INFO - doing something [Process: 76700, somemodule.py:do_something(7)]
2021-04-19 19:02:30,436 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:30,439 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:30,944 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:30,946 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
2021-04-19 19:02:31,142 - child - INFO - Child process [Process: 76700, child.py:run(18)]
2021-04-19 19:02:31,145 - somemodule - INFO - doing something [Process: 76700, somemodule.py:do_something(7)]
2021-04-19 19:02:31,449 - main - CRITICAL - Main process [Process: 103348, main.py:run(23)]
2021-04-19 19:02:31,451 - somemodule - INFO - doing something [Process: 103348, somemodule.py:do_something(7)]
答案 19 :(得分:0)
如果logging
模块中的锁,线程和分叉组合中出现死锁,则会在bug report 6721中报告(另请参阅related SO question)。
有一个小的修正解决方案here。
然而,这只会修复logging
中任何潜在的死锁。这不会解决事情可能会出现问题。请参阅此处提供的其他答案。
答案 20 :(得分:0)
有这个很棒的包
包装: https://pypi.python.org/pypi/multiprocessing-logging/
代码: https://github.com/jruere/multiprocessing-logging
安装:
pip install multiprocessing-logging
然后添加:
import multiprocessing_logging
# This enables logs inside process
multiprocessing_logging.install_mp_handler()
答案 21 :(得分:0)
提到的最简单的想法:
[WatchedFileHandler][1]
。 here详细讨论了此处理程序的原因,但是总之,与其他日志记录处理程序相比,某些竞争条件更为恶劣。这是竞争条件最短的窗口。
答案 22 :(得分:0)
其中一个替代方法是将mutliprocessing日志记录写入已知文件并注册atexit
处理程序以加入这些在stderr上读回的进程;但是,你不会通过这种方式获得stderr输出消息的实时流程。
答案 23 :(得分:-4)
对于几十年来遇到同样问题并在本网站上发现此问题的孩子,我留下了这个答案。
简单与过度复杂。只需使用其他工具。 Python非常棒,但它不是为了做某些事情而设计的。
logrotate 守护程序的以下代码段适用于我,并不会使事情过于复杂。安排它每小时运行一次
/var/log/mylogfile.log {
size 1
copytruncate
create
rotate 10
missingok
postrotate
timeext=`date -d '1 hour ago' "+%Y-%m-%d_%H"`
mv /var/log/mylogfile.log.1 /var/log/mylogfile-$timeext.log
endscript
}
这就是我安装它的方式(符号链接对logrotate不起作用):
sudo cp /directpath/config/logrotate/myconfigname /etc/logrotate.d/myconfigname
sudo cp /etc/cron.daily/logrotate /etc/cron.hourly/logrotate