我有一个数据框,代表餐厅的顾客签到(访问)。 year
仅仅是在餐厅办理登机手续的年份。
average_checkin
中添加一列df
,该列代表每年餐厅的平均访问次数。 data = {
'restaurant_id': ['--1UhMGODdWsrMastO9DZw', '--1UhMGODdWsrMastO9DZw','--1UhMGODdWsrMastO9DZw','--1UhMGODdWsrMastO9DZw','--1UhMGODdWsrMastO9DZw','--1UhMGODdWsrMastO9DZw','--6MefnULPED_I942VcFNA','--6MefnULPED_I942VcFNA','--6MefnULPED_I942VcFNA','--6MefnULPED_I942VcFNA'],
'year': ['2016','2016','2016','2016','2017','2017','2011','2011','2012','2012'],
}
df = pd.DataFrame (data, columns = ['restaurant_id','year'])
# here i count the total number of checkins a restaurant had
d = df.groupby('restaurant_id')['year'].count().to_dict()
df['nb_checkin'] = df['restaurant_id'].map(d)
mean_checkin= df.groupby(['restaurant_id','year']).agg({'nb_checkin':[np.mean]})
mean_checkin.columns = ['mean_checkin']
mean_checkin.reset_index()
# the values in mean_checkin makes no sens
#I need to merge it with df to add that new column
我对pandas lib还是很陌生,我尝试过类似的方法,但结果没有任何意义。我的语法有问题吗?如果需要任何澄清,请询问。
答案 0 :(得分:1)
每年的平均访问次数可以用餐厅的访问总数除以您拥有数据的唯一年份数来计算。
grouped = df.groupby(["restaurant_id"])
avg_annual_visits = grouped["year"].count() / grouped["year"].nunique()
avg_annual_visits = avg_annual_visits.rename("avg_annual_visits")
print(avg_annual_visits)
restaurant_id
--1UhMGODdWsrMastO9DZw 3.0
--6MefnULPED_I942VcFNA 2.0
Name: avg_annual_visits, dtype: float64
然后,如果您想将其合并回原始数据:
df = df.merge(avg_annual_visits, left_on="restaurant_id", right_index=True)
print(df)
restaurant_id year avg_annual_visits
0 --1UhMGODdWsrMastO9DZw 2016 3.0
1 --1UhMGODdWsrMastO9DZw 2016 3.0
2 --1UhMGODdWsrMastO9DZw 2016 3.0
3 --1UhMGODdWsrMastO9DZw 2016 3.0
4 --1UhMGODdWsrMastO9DZw 2017 3.0
5 --1UhMGODdWsrMastO9DZw 2017 3.0
6 --6MefnULPED_I942VcFNA 2011 2.0
7 --6MefnULPED_I942VcFNA 2011 2.0
8 --6MefnULPED_I942VcFNA 2012 2.0
9 --6MefnULPED_I942VcFNA 2012 2.0