我需要从DEM仿真中评估1800个数据文件。每个数据文件在某个时间点都有效,并且包含粒子及其温度的列表。我想绘制一段时间内粒子子集的平均温度。 不幸的是,经过一段时间的评估,我的内存不足。每个数据文件大约有15 MB。这是我所做的:
import pandas as pd
import numpy as np
import linecache
import os as os
import gc
path = "E:/Simulationen/35_1100_700/DEM/post/dump/"
timesList = [] # create empty list for time
TcentralList = [] # create empty list for temperatures
for files in os.walk(os.path.normpath(path)):
for file in files[2]: # files is a tuple with a list of filenames in the third element (index 2) of the tuple
time = (int(file[0:6])-300000)*0.1+3 # read the timestamps from filenames (first six characters) and convert to time
timesList.append(time) # write time to times list for later creation of dataframe
# Read the headerline (line 9), write items to column title list
coltitles = [sub.replace('[0]','') for sub in linecache.getline(path+file,9).split()[2:]]
columns=list(range(0,len(coltitles),1)) # list of columns to read
df = pd.read_csv(path+file, sep=' ', skiprows=8, index_col=0, usecols=columns)
df.columns = coltitles[1:]
df.index.names = [coltitles[0]]
T_central = df[df.r.le(0.01) & df.z.ge(0.045) & df.z.lt(0.055)]['f_Temp'].mean(axis=0) # Filter all rows (particles) where radius r is lower/equal than 0.01 m and z is between 0.045 m (greater/equal) and 0.055 m (lower) and average their temperatures
# List of average temperatures of central particles for later creation of dataframe
TcentralList.append(T_central)
我正在读取路径中的所有文件。时间是从文件名获得的,然后转换并存储在列表中-我稍后想创建一个带有“时间”和“温度”列的数据框。然后,我将数据文件读取到数据帧,并仅过滤中心区域中的粒子,然后平均其温度。 数据文件有17列。我尝试做的第一件事是通过缩短列表“列”来仅读取必要的列,但这并没有减少内存使用量。 然后,我尝试手动启动垃圾收集(gc):
gc.collect()
del df
del T_central
这也没有帮助。我还尝试过重新初始化df和T_central,以删除对它们的引用,
T_central=[]
df=pd.DataFrame()
但没有任何效果。
我没主意了。有人给我一个提示吗?
干杯, 塞巴斯蒂安
答案 0 :(得分:0)
偶然发现了解决方案:不是linecache.getline()
占用了太多的内存。手动指定要读取的列,然后数据框的列标题解决了该问题。