我在一个csv文件中有3列:account_id,game_variant,no_of_games ....表看起来像这样
account_id game_variant no_of_games
130 a 2
145 c 1
130 b 4
130 c 1
142 a 3
140 c 2
145 b 5
所以,我不想提取在变体a,b,c,a∩b,b∩c,a∩c,a∩b∩c中玩过的游戏
通过与game_variant分组并在no_of_games上进行求和,我能够分别提取在a,b,c中玩过的游戏,但无法在逻辑上放入相交部分。请帮我
data_agg = df.groupby(['game_variant']).agg({'no_of_games':[np.sum]})
预先感谢
答案 0 :(得分:1)
在这里,该解决方案将根据每个玩家的等级返回交集。这额外使用了defaultdict
,因为在这种情况下这非常方便。我将内联解释代码
from itertools import combinations
import pandas
from collections import defaultdict
from pprint import pprint # only needed for pretty printing of dictionary
df = pandas.read_csv('df.csv', sep='\s+') # assuming the data frame is in a file df.csv
# group by account_id to get subframes which only refer to one account.
data_agg2 = df.groupby(['account_id'])
# a defaultdict is a dictionary, where when no key is present, the function defined
# is used to create the element. This eliminates the check, if a key is
# already present or to set all combinations in advance.
games_played_2 = defaultdict(int)
# iterate over all accounts
for el in data_agg2.groups:
# extract the sub-dataframe from the gouped function
tmp = data_agg2.get_group(el)
# print(tmp) # you can uncomment this to see each account
# This is in principle the same loop as suggested before. However, as not every
# player has played all variants, one only has to create the number of combinations
# necessary for that player
for i in range(len(tmp.loc[:, 'no_of_games'])):
# As now the game_variant is a column and not the index, the first part of zip
# is slightly adapted. This loops over all combinations of variants for the
# current account.
for comb, combsum in zip(combinations(tmp.loc[:, 'game_variant'], i+1), combinations(tmp.loc[:, 'no_of_games'].values, i+1)):
# Here, each variant combination gets a unique key. Comb is sorted, as the
# variants might be not in alphabetic order. The number of games played for
# each variant for that player are added to the value of all players before.
games_played_2['_'.join(sorted(comb))] += sum(combsum)
pprint (games_played_2)
# returns
>> defaultdict(<class 'int'>,
{'a': 5,
'a_b': 6,
'a_b_c': 7,
'a_c': 3,
'b': 9,
'b_c': 11,
'c': 4})
由于您已经提取了各种变体玩的游戏数量,因此可以简单地将它们加起来。如果您想自动执行此操作,则可以在循环中对该循环使用itertools.combinations
,该循环会迭代所有可能的组合长度:
from itertools import combinations
import pandas
import numpy as np
from pprint import pprint # only needed for pretty printing of dictionary
df = pandas.read_csv('df.csv', sep='\s+') # assuming the data frame is in a file df.csv
data_agg = df.groupby(['game_variant']).agg({'no_of_games':[np.sum]})
games_played = {}
for i in range(len(data_agg.loc[:, 'no_of_games'])):
for comb, combsum in zip(combinations(data_agg.index, i+1), combinations(data_agg.loc[:, 'no_of_games'].values, i+1)):
games_played['_'.join(comb)] = sum(combsum)
pprint(games_played)
返回:
>> {'a': array([5], dtype=int64),
>> 'a_b': array([14], dtype=int64),
>> 'a_b_c': array([18], dtype=int64),
>> 'a_c': array([9], dtype=int64),
>> 'b': array([9], dtype=int64),
>> 'b_c': array([13], dtype=int64),
>> 'c': array([4], dtype=int64)}
'combinations(sequence, number)'
返回number
中sequence
个元素的所有组合的迭代器。因此,要获得所有可能的组合,必须将所有numbers
从1
迭代到len(sequence
。这是第一个for循环的作用。
下一个for
循环由两个迭代器组成:一个在聚合数据的索引(combinations(data_agg.index, i+1)
)上,一个在每个变体中实际玩游戏的数量(combinations(data_agg.loc[:, 'no_of_games'].values, i+1)
)。因此comb
应该始终是变体的列表,并汇总每个变体的游戏数量列表。请注意,要获取所有值,您必须使用.loc[:, 'no_games']
而不是.loc['no_games']
,因为后者会搜索名为'no_games'
的索引,而该索引是列名。
然后,将字典的键设置为变量列表的组合字符串,并将其值设置为所玩游戏数量的元素之和。