我有
users
------------------------
id | name | other_stuff.....
engagement
------------------------
user_id | type_code |
type_code是varchar,但是A,B,C或NULL
[为了清晰起见编辑:用户可以拥有每种类型代码的许多约定。所以我想要计算他们每人的数量。 ]
我想返回所有用户行,但是要计算A,B和C类型的约定。 E.g。
users_result
------------------------
user_id | user_name | other_stuff..... | count_A | count_B | count_C |
我已经做了很多搜索,但在其他解决方案中发现了以下问题:
“other_stuff ...”实际上是来自十几个其他联接的分组/连接结果,所以它已经是一个怪物了。所以我需要能够将其他字段添加到预先存在的“SELECT ...... FROM users ...”查询中。
所需的三个数据位均来自同一个参与表,每个参与表都有自己的条件。我没有找到任何允许我在同一张相关桌子上使用这三个条件的内容。
由于
[编辑]
我试图简化这个问题,所以人们不必查看大量不必要的东西,但似乎我可能没有提供足够的信息。这是原始查询的“大多数”。我已经取出了很多选中的字段,因为有负载,但我已经离开了大部分连接,所以你可以基本看到实际发生的事情。
SELECT
user.id,
user.first_name,
user.second_name,
GROUP_CONCAT(DISTINCT illness.id ORDER BY illness.id SEPARATOR ',' ) AS reason_for_treatment,
IF(ww_id=1000003, 1,'') as user_refused_program,
Group_CONCAT(DISTINCT physical_activity.name SEPARATOR ', ') AS programme_options,
COUNT(CASE WHEN engagement_item.type_code LIKE 'wm6%' THEN 1 ELSE NULL END) as count_A,
COUNT(CASE WHEN engagement_item.type_code LIKE 'wm12%' THEN 1 ELSE NULL END) as count_B,
COUNT(CASE WHEN engagement_item.type_code LIKE 'wm6%' THEN 1 ELSE NULL END) as count_C
FROM `user`
LEFT JOIN session AS session_induction ON (user.id = session_induction.user_id AND session_induction.session_type_id = 3)
LEFT JOIN stats AS stats_induction ON session_induction.id = stats_induction.session_id
LEFT JOIN session AS session_interim ON (user.id = session_interim.user_id AND session_interim.session_type_id = 4)
LEFT JOIN stats AS stats_interim ON session_interim.id = stats_interim.session_id
LEFT JOIN session AS session_final ON (user.id = session_final.user_id AND session_final.session_type_id = 5)
LEFT JOIN stats AS stats_final ON session_final.id = stats_final.session_id
LEFT JOIN user_has_illness ON user.ID = user_has_illness.user_id
LEFT JOIN illness ON user_has_illness.illness_id = illness.id
LEFT JOIN user_has_physical_activity ON user.ID = user_has_physical_activity.user_id
LEFT JOIN physical_activity ON user_has_physical_activity.physical_activity_id = physical_activity.id
LEFT JOIN engagement_item ON user.ID = engagement_item.user_ID
WHERE (user.INDUCTION_DATE>='2010-06-09' AND user.INDUCTION_DATE<='2011-06-09' AND user.archive!='1' )
GROUP BY user.id, engagement_item.user_id
值得一提的是它工作正常 - 返回所有需要所有详细信息的用户。除了count_A B和C cols。
删除不相关的连接并选择。
SELECT
user.id,
user.first_name,
COUNT(CASE WHEN engagement_item.type_code LIKE 'wm6%' THEN 1 ELSE NULL END) as count_A,
COUNT(CASE WHEN engagement_item.type_code LIKE 'wm12%' THEN 1 ELSE NULL END) as count_B,
COUNT(CASE WHEN engagement_item.type_code LIKE 'wm6%' THEN 1 ELSE NULL END) as count_C
FROM `user`
LEFT JOIN engagement_item ON user.ID = engagement_item.user_ID
GROUP BY user.id, engagement_item.user_id
答案 0 :(得分:1)
或许这样的事情?
select e.user_id, u.name,
sum(case e.type_code when 'A' then 1 else 0 end) as count_A,
sum(case e.type_code when 'B' then 1 else 0 end) as count_B,
sum(case e.type_code when 'C' then 1 else 0 end) as count_C
from engagement e join users u on (e.user_id = u.id)
group by e.user_id, u.name
有趣的是在CASE
中使用SUM
将计数分成三个块。
答案 1 :(得分:1)
SELECT e.user_id, u.name,
COUNT(CASE type_code WHEN 'A' THEN 1 ELSE NULL END) as count_A,
COUNT(CASE type_code WHEN 'B' THEN 1 ELSE NULL END) as count_B,
COUNT(CASE type_code WHEN 'C' THEN 1 ELSE NULL END) as count_C
FROM engagement e join users u on (e.user_id = u.id)
GROUP BY e.user_id, u.name
我会使用COUNT
代替SUM
,因为这就是它的用途,在非NULL时计算事物。
SELECT
user.id,
user.first_name,
user.second_name,
GROUP_CONCAT(DISTINCT illness.id ORDER BY illness.id SEPARATOR ',' ) AS reason_for_treatment,
IF(ww_id=1000003, 1,'') as user_refused_program,
Group_CONCAT(DISTINCT physical_activity.name SEPARATOR ', ') AS programme_options,
ei.count_A, ei.count_B, ei.count_C
FROM `user`
LEFT JOIN ( SELECT user_id
, COUNT(CASE WHEN engagement_item.type_code LIKE 'wm6%' THEN 1 ELSE NULL END) as count_A
, COUNT(CASE WHEN engagement_item.type_code LIKE 'wm12%' THEN 1 ELSE NULL END) as count_B
, COUNT(CASE WHEN engagement_item.type_code LIKE 'wm6%' THEN 1 ELSE NULL END) as count_C
FROM engagement_item
GROUP BY userid ) ei
LEFT JOIN session AS session_induction ON (user.id = session_induction.user_id AND session_induction.session_type_id = 3)
LEFT JOIN stats AS stats_induction ON session_induction.id = stats_induction.session_id
LEFT JOIN session AS session_interim ON (user.id = session_interim.user_id AND session_interim.session_type_id = 4)
LEFT JOIN stats AS stats_interim ON session_interim.id = stats_interim.session_id
LEFT JOIN session AS session_final ON (user.id = session_final.user_id AND session_final.session_type_id = 5)
LEFT JOIN stats AS stats_final ON session_final.id = stats_final.session_id
LEFT JOIN user_has_illness ON user.ID = user_has_illness.user_id
LEFT JOIN illness ON user_has_illness.illness_id = illness.id
LEFT JOIN user_has_physical_activity ON user.ID = user_has_physical_activity.user_id
LEFT JOIN physical_activity ON user_has_physical_activity.physical_activity_id = physical_activity.id
LEFT JOIN engagement_item ON user.ID = engagement_item.user_ID
WHERE (user.INDUCTION_DATE>='2010-06-09' AND user.INDUCTION_DATE<='2011-06-09' AND user.archive!='1' )
GROUP BY user.id, engagement_item.user_id, ei.count_A, ei.count_B, ei.count_C