我想部分派生输入为从属列表的函数。
我试图通过证明来定义deriveP
。
Derive
是Coquelicot.Derive中的函数。
Definition deriveP {P A B}(k:nat)(I:Euc (S P) -> Euc A -> Euc B)
(input:Euc A)(train:Euc B)(p :Euc (S P))
:(lt k (S P)) -> (lt ((S P)-(k+1)) (S P)) -> R.
intros.
pose fk := firstk k (S P) p H.
pose lk := lastk ((S P)-(k+1)) (S P) p H0.
pose pk := EucNth k p.
apply arith_basic in H.
exact ( Derive (fun PK => EucSum (QuadraticError (I (fk +++ (PK ::: lk)) input) train )) pk ).
我无法应用Tiago构成的arith_basic,因为在fk中使用了H。
在制作fk之前,我可以将arith_basic应用于H,但是由于没有k < P.+1
,因此无法制作fk。
我想在离开k < P.+1
的同时将arith_basic应用于H。
请帮助我。
(************************************************** *************)
这是R的从属列表。
Require Import Coq.Reals.Reals.
Require Import Coquelicot.Coquelicot.
Inductive Euc:nat -> Type:=
|RO : Euc 0
|Rn : forall {n:nat}, R -> Euc n -> Euc (S n).
Notation "[ ]" := RO.
Notation "[ r1 , .. , r2 ]" := (Rn r1 .. ( Rn r2 RO ) .. ).
Infix ":::" := Rn (at level 60, right associativity).
基本列表操作。
Definition head {n} (v : Euc (S n)) : R :=
match v with
| x ::: _ => x
end.
Definition tail {n} (v : Euc (S n)) : Euc n :=
match v with
| _ ::: v => v
end.
(* extract the last element *)
Fixpoint last {n} : Euc (S n) -> R :=
match n with
| 0%nat => fun v => head v
| S n => fun v => last (tail v)
end.
(* eliminate last element from list *)
Fixpoint but_last {n} : Euc (S n) -> Euc n :=
match n with
| 0%nat => fun _ => []
| S n => fun v => head v ::: but_last (tail v)
end.
(* do the opposite of cons *)
Fixpoint snoc {n} (v : Euc n) (x : R) : Euc (S n) :=
match v with
| [] => [x]
| y ::: v => y ::: snoc v x
end.
(* extract last k elements *)
Fixpoint lastk k n : Euc n -> (lt k n) -> Euc k :=
match n with
|0%nat => fun _ (H : lt k 0) => False_rect _ (Lt.lt_n_O _ H)
|S n => match k with
|S m => fun v H => snoc (lastk m n (but_last v) (le_S_n _ _ H)) (last v)
|0%nat => fun _ H => []
end
end.
(* extract first k elements *)
Fixpoint firstk k n : Euc n -> (lt k n) -> Euc k :=
match n with
|0%nat => fun _ (H :lt k 0) => False_rect _ (Lt.lt_n_O _ H)
|S n => match k with
|S m => fun v H => (head v) ::: firstk m n (tail v) (le_S_n _ _ H)
|0%nat => fun _ _ => []
end
end.
(* extract nth element *)
(* 0 origine *)
Fixpoint EucNth (k:nat) :forall {n}, Euc (S n) -> R:=
match k with
| 0%nat => fun _ e => head e
| S k' => fun n =>
match n return Euc (S n) -> R with
| 0%nat => fun e => head e
| S n' => fun v => EucNth k' (tail v)
end
end.
Fixpoint EucAppend {n m} (e:Euc n) (f:Euc m) :Euc (n+m):=
match e with
|[] => f
|e' ::: es => e' ::: (EucAppend es f)
end.
Infix "+++" := EucAppend (at level 60, right associativity).
Fixpoint QuadraticError {n : nat} (b : Euc n) : Euc n -> Euc n.
refine (match b in Euc n return Euc n -> Euc n with
|@Rn m x xs => _
|@RO => fun H => []
end).
remember (S m).
intro H; destruct H as [| k y ys].
inversion Heqn0.
inversion Heqn0.
subst; exact ((x - y)^2 ::: QuadraticError _ xs ys).
Defined.
Fixpoint EucSum {A}(e:Euc A) :R:=
match e with
| [] => 0%R
| e' ::: es => e' + (EucSum es)
end.
答案 0 :(得分:1)
您的引理k + S(P-(k + 1))= P可以用基本的代数运算来求解。 尤其是,您只需要两个引理即可简化此操作:
Theorem minus_assoc : forall y z, z < y -> z + (y - z) = y.
intro y.
induction y.
intros;inversion H.
intros.
destruct z.
trivial.
rewrite PeanoNat.Nat.sub_succ.
rewrite <- (IHy _ (le_S_n _ _ H)) at 2; trivial.
Qed.
Theorem minus_S : forall x y, y < x -> S (x - (S y)) = x - y.
intro.
induction x.
intros.
inversion H.
intros.
destruct y.
simpl.
rewrite PeanoNat.Nat.sub_0_r; trivial.
rewrite PeanoNat.Nat.sub_succ.
apply IHx.
exact (le_S_n _ _ H).
Qed.
现在,您只需要将目标重写为一个简单的介词即可:
Theorem arith_basic : forall k P, k < P -> k + S (P - (k + 1)) = P.
intros.
rewrite PeanoNat.Nat.add_1_r.
rewrite minus_S.
auto.
rewrite minus_assoc.
assumption.
trivial.
Qed.
这些目标中的大多数都可以通过对策来解决,这种对策可以自动解决Z,nat,positive和N的算术目标。
Theorem arith_basic : forall k P, k < P -> k + S (P - (k + 1)) = P.
intros;lia.
Qed
尽管我建议自动化,但是通过动手进行证明可以帮助您了解主要目标,而这可能仅靠自动化无法解决。
答案 1 :(得分:0)
我自己解决了。
我们可以使用generalize
策略在子目标中复制引理。
Definition deriveP {P A B}(k:nat)(I:Euc (S P) -> Euc A -> Euc B)
(input:Euc A)(train:Euc B)(p :Euc (S P))
:(lt k (S P)) -> (lt ((S P)-(k+1)) (S P)) -> R.
intros.
generalize H.
intro H1.
apply arith_basic in H1.
pose lk := lastk ((S P)-(k+1)) (S P) p H0.
pose fk := firstk k (S P) p H.
pose pk := EucNth k p.
rewrite (_: (P.+1)%nat = (k + (P.+1 - (k + 1)%coq_nat)%coq_nat.+1)%coq_nat) in I.
exact ( Derive (fun PK => EucSum (QuadraticError (I (fk +++ (PK ::: lk)) input) train )) pk ).
apply H1.
Defined.