以下模型的输出形状是什么?

时间:2020-09-19 19:53:22

标签: tensorflow machine-learning keras recurrent-neural-network

我正在研究一种深度学习架构,其训练数据如下所示

X shape is (80, 260,380,3,1)

y shape is (80, 260,380,1)

input_shape1 = (None, 260,380,3,1)

模型:

model = Sequential()
model.add(TimeDistributed(Conv2D(filters=6, kernel_size=(3,3), strides=(1,1), activation ="relu", padding = "same", input_shape=input_shape1)))
model.add(TimeDistributed(MaxPooling2D(pool_size=(3,3), strides=(1,1), padding = "same")))
model.add(TimeDistributed(Flatten()))
model.add(TimeDistributed(Dense(units=380, activation = "relu")))
model.add(Bidirectional(SimpleRNN(380, activation = "relu", return_sequences=True)))
model.add(TimeDistributed(Dense(380, activation ="relu")))
model.add(TimeDistributed(Dense(380, activation ="sigmoid")))
model.compile(loss = "binary_crossentropy", optimizer = "adam")

我得到的形状为(1,260)

我正在寻找(1,260,380)

我不确定RNN部分,请检查并告知

0 个答案:

没有答案