需要帮助,以便根据输入值分配排名/变量,以及在哪表示百分位数的列值 示例:
If input value = Min column value --> Rank 1 input value between Min column value and P25 column value --> Rank 2 input value between P75 column value and Max column value --> Rank 5 input value = Max column value --> Rank 6
以下是示例数据:
date | value | Min | P25 | P50 | P75 | Max | output
---------------------------------------------------
1-Sep| 45 | 12.0 | 28.2 | 48.9 | 85.4 | 98.0 | 3
2-Sep| 63 | 12.0 | 28.2 | 48.9 | 85.4 | 98.0 | 4
3-Sep| 87 | 12.0 | 28.2 | 48.9 | 85.4 | 98.0 | 5
4-Sep| 12 | 12.0 | 28.1 | 48.9 | 85.2 | 98.0 | 1
5-Sep| 89 | 14.2 | 28.8 | 48.9 | 85.8 | 98.0 | 5
6-Sep| 98 | 14.2 | 28.8 | 48.9 | 85.8 | 98.0 | 6
7-Sep| 41 | 14.2 | 28.8 | 48.9 | 85.6 | 97.9 | 3
8-Sep| 22 | 14.2 | 28.8 | 48.9 | 85.6 | 97.9 | 2
排名字典(配置)是这样的:[Min:1, P25:2, P50:3, p75:4, Max:5, Max:6]
(如果有更好的表示方式,可以更改)
我尝试使用排序值(同时使用Apply函数),但是无法确定最小/最大条件。此熊猫df有10万多行。
谢谢。
答案 0 :(得分:3)
您可以使用np.select
进行此操作:
cond1 = df['value'] <= df['Min']
cond2 = df['value'] <= df['P25']
cond3 = df['value'] <= df['P50']
cond4 = df['value'] <= df['P75']
cond5 = df['value'] < df['Max']
df['rank'] = np.select([cond1, cond2, cond3, cond4, cond5], [1,2,3,4,5], 6)
df
输出:
date value Min P25 P50 P75 Max output rank
1 1-Sep 45.0 12.0 28.2 48.9 85.4 98.0 3.0 3
2 2-Sep 63.0 12.0 28.2 48.9 85.4 98.0 4.0 4
3 3-Sep 87.0 12.0 28.2 48.9 85.4 98.0 5.0 5
4 4-Sep 12.0 12.0 28.1 48.9 85.2 98.0 1.0 1
5 5-Sep 89.0 14.2 28.8 48.9 85.8 98.0 5.0 5
6 6-Sep 98.0 14.2 28.8 48.9 85.8 98.0 6.0 6
7 7-Sep 41.0 14.2 28.8 48.9 85.6 97.9 3.0 3
8 8-Sep 22.0 14.2 28.8 48.9 85.6 97.9 2.0 2