Python functools.wraps等同于类

时间:2011-06-18 07:20:10

标签: python decorator

使用类定义装饰器时,如何通过__name____module____doc__自动转移?通常,我会使用functools的@wraps装饰器。这是我为一堂课所做的事情(这不完全是我的代码):

class memoized:
    """Decorator that caches a function's return value each time it is called.
    If called later with the same arguments, the cached value is returned, and
    not re-evaluated.
    """
    def __init__(self, func):
        super().__init__()
        self.func = func
        self.cache = {}

    def __call__(self, *args):
        try:
            return self.cache[args]
        except KeyError:
            value = self.func(*args)
            self.cache[args] = value
            return value
        except TypeError:
            # uncacheable -- for instance, passing a list as an argument.
            # Better to not cache than to blow up entirely.
            return self.func(*args)

    def __repr__(self):
        return self.func.__repr__()

    def __get__(self, obj, objtype):
        return functools.partial(self.__call__, obj)

    __doc__ = property(lambda self:self.func.__doc__)
    __module__ = property(lambda self:self.func.__module__)
    __name__ = property(lambda self:self.func.__name__)

是否有标准的装饰器来自动创建名称模块和文档?另外,要自动化get方法(我假设用于创建绑定方法?)是否有任何缺少的方法?

5 个答案:

答案 0 :(得分:41)

似乎每个人都错过了明显的解决方案。

>>> import functools
>>> class memoized(object):
    """Decorator that caches a function's return value each time it is called.
    If called later with the same arguments, the cached value is returned, and
    not re-evaluated.
    """
    def __init__(self, func):
        self.func = func
        self.cache = {}
        functools.update_wrapper(self, func)  ## TA-DA! ##
    def __call__(self, *args):
        pass  # Not needed for this demo.

>>> @memoized
def fibonacci(n):
    """fibonacci docstring"""
    pass  # Not needed for this demo.

>>> fibonacci
<__main__.memoized object at 0x0156DE30>
>>> fibonacci.__name__
'fibonacci'
>>> fibonacci.__doc__
'fibonacci docstring'

答案 1 :(得分:22)

我在stdlib中并不知道这些事情,但如果需要,我们可以创建自己的东西。

这样的事情可以起作用:

from functools import WRAPPER_ASSIGNMENTS


def class_wraps(cls):
    """Update a wrapper class `cls` to look like the wrapped."""

    class Wrapper(cls):
        """New wrapper that will extend the wrapper `cls` to make it look like `wrapped`.

        wrapped: Original function or class that is beign decorated.
        assigned: A list of attribute to assign to the the wrapper, by default they are:
             ['__doc__', '__name__', '__module__', '__annotations__'].

        """

        def __init__(self, wrapped, assigned=WRAPPER_ASSIGNMENTS):
            self.__wrapped = wrapped
            for attr in assigned:
                setattr(self, attr, getattr(wrapped, attr))

            super().__init__(wrapped)

        def __repr__(self):
            return repr(self.__wrapped)

    return Wrapper

用法:

@class_wraps
class memoized:
    """Decorator that caches a function's return value each time it is called.
    If called later with the same arguments, the cached value is returned, and
    not re-evaluated.
    """

    def __init__(self, func):
        super().__init__()
        self.func = func
        self.cache = {}

    def __call__(self, *args):
        try:
            return self.cache[args]
        except KeyError:
            value = self.func(*args)
            self.cache[args] = value
            return value
        except TypeError:
            # uncacheable -- for instance, passing a list as an argument.
            # Better to not cache than to blow up entirely.
            return self.func(*args)

    def __get__(self, obj, objtype):
        return functools.partial(self.__call__, obj)


@memoized
def fibonacci(n):
    """fibonacci docstring"""
    if n in (0, 1):
       return n
    return fibonacci(n-1) + fibonacci(n-2)


print(fibonacci)
print("__doc__: ", fibonacci.__doc__)
print("__name__: ", fibonacci.__name__)

输出:

<function fibonacci at 0x14627c0>
__doc__:  fibonacci docstring
__name__:  fibonacci

修改

如果你想知道为什么这不包含在stdlib中是因为你可以 将你的类装饰器包装在一个函数decorater中并像这样使用functools.wraps

def wrapper(f):

    memoize = memoized(f)

    @functools.wraps(f)
    def helper(*args, **kws):
        return memoize(*args, **kws)

    return helper


@wrapper
def fibonacci(n):
    """fibonacci docstring"""
    if n <= 1:
       return n
    return fibonacci(n-1) + fibonacci(n-2)

答案 2 :(得分:2)

我需要能够包装类和函数的东西并写下来:

def wrap_is_timeout(base):
    '''Adds `.is_timeout=True` attribute to objects returned by `base()`.

    When `base` is class, it returns a subclass with same name and adds read-only property.
    Otherwise, it returns a function that sets `.is_timeout` attribute on result of `base()` call.

    Wrappers make best effort to be transparent.
    '''
    if inspect.isclass(base):
        class wrapped(base):
            is_timeout = property(lambda _: True)

        for k in functools.WRAPPER_ASSIGNMENTS:
            v = getattr(base, k, _MISSING)
            if v is not _MISSING:
                try:
                    setattr(wrapped, k, v)
                except AttributeError:
                    pass
        return wrapped

    @functools.wraps(base)
    def fun(*args, **kwargs):
        ex = base(*args, **kwargs)
        ex.is_timeout = True
        return ex
    return fun

答案 3 :(得分:1)

我们真正需要做的就是修改装饰器的行为,使其“卫生”,即它是属性保留的。

#!/usr/bin/python3

def hygienic(decorator):
    def new_decorator(original):
        wrapped = decorator(original)
        wrapped.__name__ = original.__name__
        wrapped.__doc__ = original.__doc__
        wrapped.__module__ = original.__module__
        return wrapped
    return new_decorator

这就是你需要的一切。一般来说。它不保留签名,但如果你真的想要,你可以使用库来做到这一点。我还继续重写了memoization代码,以便它也适用于关键字参数。还有一个错误,无法将其转换为可混乱的元组将使它在100%的情况下不起作用。

使用memoized修改其行为的重写@hygienic装饰器的演示。 memoized现在是一个包装原始类的函数,尽管你可以(比如另一个答案)编写一个包装类,或者甚至更好的方法来检测它是否是一个类,如果包含{{1}方法。

__init__

行动中:

@hygienic
class memoized:
    def __init__(self, func):
        self.func = func
        self.cache = {}

    def __call__(self, *args, **kw):
        try:
            key = (tuple(args), frozenset(kw.items()))
            if not key in self.cache:
                self.cache[key] = self.func(*args,**kw)
            return self.cache[key]
        except TypeError:
            # uncacheable -- for instance, passing a list as an argument.
            # Better to not cache than to blow up entirely.
            return self.func(*args,**kw)

答案 4 :(得分:0)

使用继承的另一种解决方案:

import functools
import types

class CallableClassDecorator:
    """Base class that extracts attributes and assigns them to self.

    By default the extracted attributes are:
         ['__doc__', '__name__', '__module__'].
    """

    def __init__(self, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS):
        for attr in assigned:
            setattr(self, attr, getattr(wrapped, attr))
        super().__init__()

    def __get__(self, obj, objtype):
        return types.MethodType(self.__call__, obj)

并且,用法:

class memoized(CallableClassDecorator):
    """Decorator that caches a function's return value each time it is called.
    If called later with the same arguments, the cached value is returned, and
    not re-evaluated.
    """
    def __init__(self, function):
        super().__init__(function)
        self.function = function
        self.cache = {}

    def __call__(self, *args):
        try:
            return self.cache[args]
        except KeyError:
            value = self.function(*args)
            self.cache[args] = value
            return value
        except TypeError:
            # uncacheable -- for instance, passing a list as an argument.
            # Better to not cache than to blow up entirely.
            return self.function(*args)