使用类定义装饰器时,如何通过__name__
,__module__
和__doc__
自动转移?通常,我会使用functools的@wraps装饰器。这是我为一堂课所做的事情(这不完全是我的代码):
class memoized:
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
super().__init__()
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args)
def __repr__(self):
return self.func.__repr__()
def __get__(self, obj, objtype):
return functools.partial(self.__call__, obj)
__doc__ = property(lambda self:self.func.__doc__)
__module__ = property(lambda self:self.func.__module__)
__name__ = property(lambda self:self.func.__name__)
是否有标准的装饰器来自动创建名称模块和文档?另外,要自动化get方法(我假设用于创建绑定方法?)是否有任何缺少的方法?
答案 0 :(得分:41)
似乎每个人都错过了明显的解决方案。
>>> import functools
>>> class memoized(object):
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
self.func = func
self.cache = {}
functools.update_wrapper(self, func) ## TA-DA! ##
def __call__(self, *args):
pass # Not needed for this demo.
>>> @memoized
def fibonacci(n):
"""fibonacci docstring"""
pass # Not needed for this demo.
>>> fibonacci
<__main__.memoized object at 0x0156DE30>
>>> fibonacci.__name__
'fibonacci'
>>> fibonacci.__doc__
'fibonacci docstring'
答案 1 :(得分:22)
我在stdlib中并不知道这些事情,但如果需要,我们可以创建自己的东西。
这样的事情可以起作用:
from functools import WRAPPER_ASSIGNMENTS
def class_wraps(cls):
"""Update a wrapper class `cls` to look like the wrapped."""
class Wrapper(cls):
"""New wrapper that will extend the wrapper `cls` to make it look like `wrapped`.
wrapped: Original function or class that is beign decorated.
assigned: A list of attribute to assign to the the wrapper, by default they are:
['__doc__', '__name__', '__module__', '__annotations__'].
"""
def __init__(self, wrapped, assigned=WRAPPER_ASSIGNMENTS):
self.__wrapped = wrapped
for attr in assigned:
setattr(self, attr, getattr(wrapped, attr))
super().__init__(wrapped)
def __repr__(self):
return repr(self.__wrapped)
return Wrapper
用法:
@class_wraps
class memoized:
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, func):
super().__init__()
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args)
def __get__(self, obj, objtype):
return functools.partial(self.__call__, obj)
@memoized
def fibonacci(n):
"""fibonacci docstring"""
if n in (0, 1):
return n
return fibonacci(n-1) + fibonacci(n-2)
print(fibonacci)
print("__doc__: ", fibonacci.__doc__)
print("__name__: ", fibonacci.__name__)
输出:
<function fibonacci at 0x14627c0>
__doc__: fibonacci docstring
__name__: fibonacci
修改强>
如果你想知道为什么这不包含在stdlib中是因为你可以
将你的类装饰器包装在一个函数decorater中并像这样使用functools.wraps
:
def wrapper(f):
memoize = memoized(f)
@functools.wraps(f)
def helper(*args, **kws):
return memoize(*args, **kws)
return helper
@wrapper
def fibonacci(n):
"""fibonacci docstring"""
if n <= 1:
return n
return fibonacci(n-1) + fibonacci(n-2)
答案 2 :(得分:2)
我需要能够包装类和函数的东西并写下来:
def wrap_is_timeout(base):
'''Adds `.is_timeout=True` attribute to objects returned by `base()`.
When `base` is class, it returns a subclass with same name and adds read-only property.
Otherwise, it returns a function that sets `.is_timeout` attribute on result of `base()` call.
Wrappers make best effort to be transparent.
'''
if inspect.isclass(base):
class wrapped(base):
is_timeout = property(lambda _: True)
for k in functools.WRAPPER_ASSIGNMENTS:
v = getattr(base, k, _MISSING)
if v is not _MISSING:
try:
setattr(wrapped, k, v)
except AttributeError:
pass
return wrapped
@functools.wraps(base)
def fun(*args, **kwargs):
ex = base(*args, **kwargs)
ex.is_timeout = True
return ex
return fun
答案 3 :(得分:1)
我们真正需要做的就是修改装饰器的行为,使其“卫生”,即它是属性保留的。
#!/usr/bin/python3
def hygienic(decorator):
def new_decorator(original):
wrapped = decorator(original)
wrapped.__name__ = original.__name__
wrapped.__doc__ = original.__doc__
wrapped.__module__ = original.__module__
return wrapped
return new_decorator
这就是你需要的一切。一般来说。它不保留签名,但如果你真的想要,你可以使用库来做到这一点。我还继续重写了memoization代码,以便它也适用于关键字参数。还有一个错误,无法将其转换为可混乱的元组将使它在100%的情况下不起作用。
使用memoized
修改其行为的重写@hygienic
装饰器的演示。 memoized
现在是一个包装原始类的函数,尽管你可以(比如另一个答案)编写一个包装类,或者甚至更好的方法来检测它是否是一个类,如果包含{{1}方法。
__init__
行动中:
@hygienic
class memoized:
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, *args, **kw):
try:
key = (tuple(args), frozenset(kw.items()))
if not key in self.cache:
self.cache[key] = self.func(*args,**kw)
return self.cache[key]
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.func(*args,**kw)
答案 4 :(得分:0)
使用继承的另一种解决方案:
import functools
import types
class CallableClassDecorator:
"""Base class that extracts attributes and assigns them to self.
By default the extracted attributes are:
['__doc__', '__name__', '__module__'].
"""
def __init__(self, wrapped, assigned=functools.WRAPPER_ASSIGNMENTS):
for attr in assigned:
setattr(self, attr, getattr(wrapped, attr))
super().__init__()
def __get__(self, obj, objtype):
return types.MethodType(self.__call__, obj)
并且,用法:
class memoized(CallableClassDecorator):
"""Decorator that caches a function's return value each time it is called.
If called later with the same arguments, the cached value is returned, and
not re-evaluated.
"""
def __init__(self, function):
super().__init__(function)
self.function = function
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.function(*args)
self.cache[args] = value
return value
except TypeError:
# uncacheable -- for instance, passing a list as an argument.
# Better to not cache than to blow up entirely.
return self.function(*args)