尝试构建一个Tensorflow模型,其中我的数据具有70个功能。这是我的第一层的设置:
tf.keras.layers.Dense(units=50, activation='relu', input_shape=(None,70)),
将输入形状设置为(None,70)
在我看来是最好的,因为我正在使用前馈神经网络,其中每个“行”数据都是唯一的。我正在使用大小为10的批处理大小(现在),我的输入形状是否应更改为(10,70)
?
我尝试使用原始的(None, 70)
并收到错误消息:
WARNING:tensorflow:Model was constructed with shape (None, None, 70) for input Tensor("dense_33_input:0", shape=(None, None, 70), dtype=float32), but it was called on an input with incompatible shape (10, 70).
TypeError: Input 'y' of 'Mul' Op has type float64 that does not match type float32 of argument 'x'.
对于input_shape
到底出了什么问题,颇有些困惑,因为(None, 70)
似乎最合适。非常感谢您的帮助。
编辑:想添加一个可重现的示例以获得更多上下文。对不起,长度。这是对[此示例] [1]的复制,以更好地适合我的当前数据(非图像)。
可变自动编码器模型
class VAE(tf.keras.Model):
def __init__(self, latent_dim):
super(VAE, self).__init__()
self.latent_dim = latent_dim
self.encoder = tf.keras.Sequential(
[
tf.keras.layers.Dense(units=50, activation='relu', input_shape=(70,)),
tf.keras.layers.Dense(latent_dim + latent_dim), #No activation
])
self.decoder = tf.keras.Sequential(
[
tf.keras.layers.Dense(units=50, activation='relu', input_shape=(latent_dim,)),
tf.keras.layers.Dense(units=70),
])
@tf.function
def sample(self, eps=None):
if eps is None:
eps = tf.random.normal(shape=(100, self.latent_dim))
return self.decode(eps, apply_sigmoid=True)
def encode(self, x):
mean, logvar = tf.split(self.encoder(x), num_or_size_splits=2, axis=1)
return mean, logvar
def reparameterize(self, mean, logvar):
eps = tf.random.normal(shape=mean.shape)
return eps * tf.exp(logvar * .5) + mean
def decode(self, z, apply_sigmoid=False):
logits = self.decoder(z)
if apply_sigmoid:
probs = tf.sigmoid(logits)
return probs
return logits
[1]: https://www.tensorflow.org/tutorials/generative/cvae
优化器和损失Funx
optimizer = tf.keras.optimizers.Adam(1e-4)
def log_normal_pdf(sample, mean, logvar, raxis=1):
log2pi = tf.math.log(2. * np.pi)
return tf.reduce_sum(
-.5 * ((sample - mean) ** 2. * tf.exp(-logvar) + logvar + log2pi), axis=raxis)
def compute_loss(model, x):
mean, logvar = model.encode(x)
z = model.reparameterize(mean, logvar)
x_logit = model.decode(z)
cross_ent = tf.nn.sigmoid_cross_entropy_with_logits(logits=x_logit, labels=x)
logpx_z = -tf.reduce_sum(cross_ent, axis=[1])
logpz = log_normal_pdf(z, 0, 0)
logqz_x = log_normal_pdf(z, mean, logvar)
return -tf.reduce_mean(logpx_z + logpz - logqz_x)
@tf.function
def train_step(model, x, optimizer):
with tf.GradientTape() as tape:
loss = compute_loss(model, x)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
培训
X = tf.random.uniform((100,70))
y = tf.random.uniform((100,))
ds_train = tf.data.Dataset.from_tensor_slices((X, y))
tf.random.set_seed(1)
train = ds_train.shuffle(buffer_size=len(X))
train = train.batch(batch_size=10, drop_remainder=False)
epochs = 5
latent_dim = 2
model = VAE(2)
for epoch in range(1, epochs+1):
start_time = time.time()
for i, (train_x, train_y) in enumerate(train):
train_step(model, train_x, optimizer)
end_time = time.time()
loss = tf.keras.metrics.Mean()
for i, (test_x, test_y) in enumerate(ds_test):
loss(compute_loss(model, test_x))
elbo = -loss.result()
display.clear_output(wait=False)
print('Epoch: {}, Test set ELBO: {}, time elapse for current epoch: {}'
.format(epoch, elbo, end_time - start_time))
答案 0 :(得分:1)
input_shape
不应包含批次尺寸。使用input_shape=(70,)
。
tf.keras.layers.Dense(units=50, activation='relu', input_shape=(70,))
您可以在致电model.fit(..., batch_size=10)
时设置批处理大小。请参阅tf.keras.Model.fit
上的文档。
由于将int32
值传递给tf.math.exp
,因此原始帖子中出现了另一个错误。该行应显示为
logpz = log_normal_pdf(z, 0., 0.)
解决该错误。请注意0.
值,该值计算为浮点数而不是整数。