ValueError:形状(1、4)和(1、3)不兼容

时间:2020-09-05 04:17:32

标签: python python-3.x tensorflow keras

我使用简单的神经学习方法在Jupyter笔记本上对iris.csv进行分类。
我设置了1个隐藏层,其中包括10个隐藏单元。
“ iris.csv”具有4个功能和1个结果,并且结果具有3个种类。 因此,我在Dense层中设置了4个input_shape和3个。

代码:

import seaborn
import numpy
import pandas 

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

from keras.models import Sequential
from keras.layers.core import Dense, Activation
from keras.utils import np_utils

data = pandas.read_csv('./data/iris.csv')
data.head()

class_as_one_hot_encoding = pandas.get_dummies(data['Species'])
del data['Species']
data = pandas.concat([data, class_as_one_hot_encoding], axis=1)
data.head()

x = data.values[:,:4]
y = data.values[:,4:]
train_x, test_x, train_y, test_y = train_test_split(x, y, train_size=0.7)
model = Sequential()
model.add(Dense(10, input_shape=(4,)))
model.add(Activation('sigmoid'))
model.add(Dense(3))
model.add(Activation('softmax'))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])
model_info = model.fit(train_x, train_y, epochs=100, batch_size=1 )

ValueError:形状(1、4)和(1、3)是不兼容的完整错误消息,如下所示。 我不知道如何适应它。

错误:

Epoch 1/100
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-23-b5e5622d976c> in <module>
      8 model.add(Activation('softmax'))
      9 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=["accuracy"])
---> 10 model_info = model.fit(train_x, train_y, epochs=100, batch_size=1 )

~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs)
    106   def _method_wrapper(self, *args, **kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self, *args, **kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

~\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
    778       else:
    779         compiler = "nonXla"
--> 780         result = self._call(*args, **kwds)
    781 
    782       new_tracing_count = self._get_tracing_count()

~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
    821       # This is the first call of __call__, so we have to initialize.
    822       initializers = []
--> 823       self._initialize(args, kwds, add_initializers_to=initializers)
    824     finally:
    825       # At this point we know that the initialization is complete (or less

~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
    694     self._graph_deleter = FunctionDeleter(self._lifted_initializer_graph)
    695     self._concrete_stateful_fn = (
--> 696         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
    697             *args, **kwds))
    698 

~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2853       args, kwargs = None, None
   2854     with self._lock:
-> 2855       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2856     return graph_function
   2857 

~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
   3211 
   3212       self._function_cache.missed.add(call_context_key)
-> 3213       graph_function = self._create_graph_function(args, kwargs)
   3214       self._function_cache.primary[cache_key] = graph_function
   3215       return graph_function, args, kwargs

~\anaconda3\lib\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3063     arg_names = base_arg_names + missing_arg_names
   3064     graph_function = ConcreteFunction(
-> 3065         func_graph_module.func_graph_from_py_func(
   3066             self._name,
   3067             self._python_function,

~\anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    984         _, original_func = tf_decorator.unwrap(python_func)
    985 
--> 986       func_outputs = python_func(*func_args, **func_kwargs)
    987 
    988       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

~\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    599         # the function a weak reference to itself to avoid a reference cycle.
--> 600         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    601     weak_wrapped_fn = weakref.ref(wrapped_fn)
    602 

~\anaconda3\lib\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
    971           except Exception as e:  # pylint:disable=broad-except
    972             if hasattr(e, "ag_error_metadata"):
--> 973               raise e.ag_error_metadata.to_exception(e)
    974             else:
    975               raise

ValueError: in user code:

    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:806 train_function  *
        return step_function(self, iterator)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:789 run_step  **
        outputs = model.train_step(data)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py:748 train_step
        loss = self.compiled_loss(
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\engine\compile_utils.py:204 __call__
        loss_value = loss_obj(y_t, y_p, sample_weight=sw)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\losses.py:149 __call__
        losses = ag_call(y_true, y_pred)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\losses.py:253 call  **
        return ag_fn(y_true, y_pred, **self._fn_kwargs)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper
        return target(*args, **kwargs)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\losses.py:1535 categorical_crossentropy
        return K.categorical_crossentropy(y_true, y_pred, from_logits=from_logits)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\util\dispatch.py:201 wrapper
        return target(*args, **kwargs)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\keras\backend.py:4687 categorical_crossentropy
        target.shape.assert_is_compatible_with(output.shape)
    C:\Users\Admin\anaconda3\lib\site-packages\tensorflow\python\framework\tensor_shape.py:1134 assert_is_compatible_with
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (1, 4) and (1, 3) are incompatible

0 个答案:

没有答案