通常,当您要创建将一组数据转换为数据框时,请为每列创建一个列表,从这些列表中创建一个字典,然后从该字典中创建一个数据框。
我要创建的数据框有75列,所有列均具有相同的行数。一张一张地定义清单是行不通的。取而代之的是,我决定制作一个列表,并将每行的特定块迭代地放入数据框。 在这里,我将举一个将列表转换为数据框的示例:
lst = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# Example list
df =
a b c d e
0 0 2 4 6 8
1 1 3 5 7 9
# Result I want from the example list
这是我的测试代码:
import pandas as pd
import numpy as np
dict = {'a':[], 'b':[], 'c':[], 'd':[], 'e':[]}
df = pd.DataFrame(dict)
# Here is my test data frame, it contains 5 columns and no rows.
lst = np.arange(10).tolist()
# This is my test list, it looks like this lst = [0, 2, …, 9]
for i in range(len(lst)):
df.iloc[:, i] = df.iloc[:, i]\
.append(pd.Series(lst[2 * i:2 * i + 2]))
# This code is supposed to put two entries per column for the whole data frame.
# For the first column, i = 0, so [2 * (0):2 * (0) + 2] = [0:2]
# df.iloc[:, 0] = lst[0:2], so df.iloc[:, 0] = [0, 1]
# Second column i = 1, so [2 * (1):2 * (1) + 2] = [2:4]
# df.iloc[:, 1] = lst[2:4], so df.iloc[:, 1] = [2, 3]
# This is how the code was supposed to allocate lst to df.
# However it outputs an error.
运行此代码时出现此错误:
ValueError: cannot reindex from a duplicate axis
当我添加ignore_index = True
以使自己拥有
for i in range(len(lst)):
df.iloc[:, i] = df.iloc[:, i]\
.append(pd.Series(lst[2 * i:2 * i + 2]), ignore_index = True)
我收到此错误:
IndexError: single positional indexer is out-of-bounds
运行代码后,我检查df
的结果。无论是否忽略索引,输出都是相同的。
In: df
Out:
a b c d e
0 0 NaN NaN NaN NaN
1 1 NaN NaN NaN NaN
似乎第一个循环运行正常,但是在尝试填充第二个列时发生错误。
有人知道如何使它工作吗?谢谢。
答案 0 :(得分:0)
IIUC:
lst = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
alst = np.array(lst)
df = pd.DataFrame(alst.reshape(2,-1, order='F'), columns = [*'abcde'])
print(df)
输出:
a b c d e
0 0 2 4 6 8
1 1 3 5 7 9