删除pyspark数据帧时遇到内存错误

时间:2020-09-02 15:06:22

标签: python pyspark

我对pyspark有点陌生,并且遇到了重复删除数据帧的问题。

我的数据框中有3个字段,分别是PersonId,PlaceId和ThingId。这是一个示例:

PersonTest = [1,1,2,2,2,3,4]
PlaceTest = [['A', 'B'],['A', 'B', 'C'],['C'],['C','D','E','F'],['C','D','F'],['C','D','F'],['D','F']]
ThingTest = [9,8,7,6,5,4,3] 

pandasdf = pd.DataFrame({'PersonId' : PersonTest, 'PlaceId' : PlaceTest, 'ThingId' : ThingTest})

我最后想要得到的是每个PersonID一行,其中PlaceId是场所的集合,ThingId是该PersonId的ThingId的最大值。因此,在示例中,我应该得到一个看起来像这样的数据框:

PersonId    PlaceId   ThingId
1   [A, B, C]      9
2   [C, D, E, F]   7
3   [C, D, F]      4
4   [D, F]         3

使用它来创建一个火花数据框。

sparkdf = spark.createDataFrame(pandasdf, ['PersonId', 'PlaceId', 'ThingId'])

这会将行数从大约300,000减少到75,000。从这里我尝试了几件事。我试图通过删除重复项来创建另一个数据框,像这样。

dropped_df = df_prop_spark.dropDuplicates(subset=['PersonId']).count()

我也试图丢弃并收集。 (我只是意识到我应该在这里使用collect_set。)不管哪种方式,我都会遇到内存不足的错误。

df_prop_spark.dropDuplicates(subset=['person_id']).agg(collect_list('prop_id')).show()

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-6-db7f6a9bc71f> in <module>
----> 1 df_prop_spark.dropDuplicates(subset=['PersonId']).agg(collect_list('PlaceId')).show()

~/miniconda3/lib/python3.7/site-packages/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
    438         """
    439         if isinstance(truncate, bool) and truncate:
--> 440             print(self._jdf.showString(n, 20, vertical))
    441         else:
    442             print(self._jdf.showString(n, int(truncate), vertical))

~/miniconda3/lib/python3.7/site-packages/py4j/java_gateway.py in __call__(self, *args)
   1303         answer = self.gateway_client.send_command(command)
   1304         return_value = get_return_value(
-> 1305             answer, self.gateway_client, self.target_id, self.name)
   1306 
   1307         for temp_arg in temp_args:

~/miniconda3/lib/python3.7/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
    129     def deco(*a, **kw):
    130         try:
--> 131             return f(*a, **kw)
    132         except py4j.protocol.Py4JJavaError as e:
    133             converted = convert_exception(e.java_exception)

~/miniconda3/lib/python3.7/site-packages/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o51.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 3 in stage 0.0 failed 1 times, most recent failure: Lost task 3.0 in stage 0.0 (TID 3, 10.100.0.161, executor driver): java.lang.OutOfMemoryError: Java heap space

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2023)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:1972)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:1971)
    at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
    at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1971)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:950)
    at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:950)
    at scala.Option.foreach(Option.scala:407)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:950)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2203)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2152)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2141)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:752)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2093)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2114)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2133)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:467)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:420)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:47)
    at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3625)
    at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2695)
    at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3616)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
    at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
    at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:763)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3614)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2695)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2902)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:300)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:337)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.OutOfMemoryError: Java heap space

有人有什么想法吗?

1 个答案:

答案 0 :(得分:1)

您正在使用什么环境?另外,我会避开熊猫,因为它会将所有内容存储在内存中,而是创建了一个Spark Dataframe。您也可以增强驱动程序的内存。 此块假定您正在本地计算机上运行spark应用程序,并将驱动程序内存设置为10g(可以在系统允许的范围内使用)。

from pyspark.sql import SparkSession

spark = SparkSession.builder \
    .master('local[*]') \
    .config("spark.driver.memory", "10g") \
    .appName('your app name') \
    .getOrCreate()