输入:
item loc month year qty
watch delhi 1 2020 10
watch delhi 2 2020 0
watch delhi 3 2020 20
watch delhi 4 2020 30
watch delhi 5 2020 40
watch delhi 6 2020 50
输出:
item loc month year qty avg
watch delhi 1 2020 10 0
watch delhi 2 2020 0 10
watch delhi 3 2020 20 10
watch delhi 4 2020 30 20
watch delhi 5 2020 40 25
watch delhi 6 2020 50 35
我们需要计算前两个月的平均值....但是在计算平均值时需要一个条件.....我们不需要考虑数量= 0,同时计算平均值。....
例如:理想情况下,对于第3个月,平均值应为10 + 0/2 = 5...。但是由于我们需要忽略qty = 0 ...所以对于第3个月,平均值应为10/1 = 10 ....
预先感谢
答案 0 :(得分:4)
在SQL中,可以将窗口函数与窗口框架说明符一起使用:
select t.*,
coalesce(avg(nullif(qty, 0)) over (partition by item, loc
order by month
rows between 2 preceding and 1 preceding
),
0) as qty_avg
from t;
答案 1 :(得分:1)
从火花中,
val w = Window.partitionBy("item","loc").orderBy("month").rangeBetween(-2, -1)
df.withColumn("month", 'month.cast("int"))
.withColumn("avg", avg(when('qty =!= lit(0), 'qty)).over(w)).show()
+-----+-----+-----+----+---+----+
| item| loc|month|year|qty| avg|
+-----+-----+-----+----+---+----+
|watch|delhi| 1|2020| 10| 0.0|
|watch|delhi| 2|2020| 0|10.0|
|watch|delhi| 3|2020| 20|10.0|
|watch|delhi| 4|2020| 30|20.0|
|watch|delhi| 5|2020| 40|25.0|
|watch|delhi| 6|2020| 50|35.0|
+-----+-----+-----+----+---+----+
答案 2 :(得分:1)
可以使用lag函数和WindowFrame
在spark中使用import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types.IntegerType
df.withColumn("month", col("month").cast(IntegerType))
.withColumn("avg", when(lag("qty", 2, 0).over(w) =!= lit(0) && lag("qty", 1, 0).over(w) =!= lit(0),
(lag("qty", 2, 0).over(w) + lag("qty", 1, 0).over(w)).divide(lit(2)))
.when(lag("qty", 1, 0).over(w) =!= lit(0),lag("qty", 1, 0).over(w)).otherwise(lag("qty", 2, 0)
.over(w))).show()
输出:
+-----+-----+-----+----+---+----+
| item| loc|month|year|qty| avg|
+-----+-----+-----+----+---+----+
|watch|delhi| 1|2020| 10| 0|
|watch|delhi| 2|2020| 0| 10|
|watch|delhi| 3|2020| 20| 10|
|watch|delhi| 4|2020| 30| 20|
|watch|delhi| 5|2020| 40|25.0|
|watch|delhi| 6|2020| 50|35.0|
+-----+-----+-----+----+---+----+
答案 3 :(得分:0)
我认为这是有条件的平均水平:
select
t.*,
coalesce(avg(nullif(qty, 0)) over(partition by item, loc order by month), 0) qty_avg
from mytable t
nullif()
产生null
值的0
-avg()
然后忽略。我用coalesce()
包裹了整个窗口平均值,因为当只有0
个值时,您似乎想要null
。