我要串联三个大小为[1024,1024,3]的图像,以制作大小为[3,1024,1024,3]的批处理。我用TensorFlow编写了此代码,但无法正常工作。它返回错误"InaccessibleTensorError: The tensor 'Tensor("truediv:0", shape=(1024, 1024, 3), dtype=float32)' cannot be accessed here: it is defined in another function or code block. Use return values, explicit Python locals or TensorFlow collections to access it."
。
def decode_img(filename):
image = tf.ones((3,1024,1024,3),dtype=tf.dtypes.float32)
cnt=0
slices = []
for fi in filename:
bits = tf.io.read_file(fi)
img = tf.image.decode_jpeg(bits, channels=3)
img = tf.image.resize(img, (1024,1024))
slices.append(tf.cast(img, tf.float32) / 255.0)
cnt +=1
image = tf.stack(slices)
return image
#-----------------------
filenames = ['img1.png', 'img2.png', 'img3.png']
dataset = tf.data.Dataset.from_tensor_slices(filenames)
dataset = dataset.map(decode_img, num_parallel_calls=AUTO)
答案 0 :(得分:1)
通常,tensorflow不支持项目分配。相反,生成所需的所有img
层,然后使用tf.stack()
或tf.concatenate
。
filename = [img1.png, img2.png, img3.png]
cnt=0
slices = []
for fi in filename:
bits = tf.io.read_file(fi)
img = tf.image.decode_jpeg(bits, channels=3)
img = tf.image.resize(img, (1024,1024))
slices.append(tf.cast(img, tf.float32) / 255.0)
cnt +=1
image = tf.stack(slices)