根据多个条件合并两个数据帧

时间:2020-08-23 23:02:19

标签: python pandas dataframe

我正在寻找比较两个数据帧(df-a和df-b),并从1个数据帧(df-b)中查找给定ID和日期的日期位于该ID与其他数据帧匹配的日期范围内的地方( df-a)。然后,我想剥离df-a中的所有列,并将它们连接到匹配的df-b中。例如

如果我有数据框df-a,则采用以下格式 df-a:

    ID       Start_Date    End_Date     A   B   C   D   E 
0   cd2      2020-06-01    2020-06-24   'a' 'b' 'c' 10  20
1   cd2      2020-06-24    2020-07-21
2   cd56     2020-06-10    2020-07-03
3   cd915    2020-04-28    2020-07-21
4   cd103    2020-04-13    2020-04-24

和df-b输入

    ID      Date
0   cd2     2020-05-12
1   cd2     2020-04-12
2   cd2     2020-06-10
3   cd15    2020-04-28
4   cd193   2020-04-13

我想要一个类似df-c =

的输出df
    ID      Date        Start_Date  End_Date    A   B   C   D   E 
0   cd2     2020-05-12      -           -       -   -   -   -   -
1   cd2     2020-04-12      -           -       -   -   -   -   -
2   cd2     2020-06-10 2020-06-01 2020-06-11    'a' 'b' 'c' 10  20
3   cd15    2020-04-28      -           -       -   -   -   -   -
4   cd193   2020-04-13      -           -       -   -   -   -   -

在上一篇文章中,我得到了一个绝妙的答案,该答案允许比较数据帧并在满足此条件的任何地方删除,但我一直在努力寻找如何从df-a中适当提取信息的方法。当前尝试如下!

df_c=df_b.copy()

ar=[]
for i in range(df_c.shape[0]):
    currentID = df_c.stafnum[i]
    currentDate = df_c.Date[i]
    df_a_entriesForCurrentID = df_a.loc[df_a.stafnum == currentID]

    for j in range(df_a_entriesForCurrentID.shape[0]):
        startDate = df_a_entriesForCurrentID.iloc[j,:].Leave_Start_Date
        endDate = df_a_entriesForCurrentID.iloc[j,:].Leave_End_Date

        if (startDate <= currentDate <= endDate):
            print(df_c.loc[i])
            print(df_a_entriesForCurrentID.iloc[j,:])
            
            #df_d=pd.concat([df_c.loc[i], df_a_entriesForCurrentID.iloc[j,:]], axis=0)
            
            #df_fin_2=df_fin.append(df_d, ignore_index=True)
            #ar.append(df_d)

1 个答案:

答案 0 :(得分:1)

因此,您想进行某种“软”匹配。这是一种尝试对日期范围匹配进行矢量化处理的解决方案。

def has_a(expresion):
    n = len(expresion)
    i = 0
    while i<n:
        if expresion[i] == 'a':
            return True
        i += 1
    return False

输出

# notice working with dates as strings, inequalities will only work if dates in format y-m-d
# otherwise it is safer to parse all date columns like `df_a.Date = pd.to_datetime(df_a)`

# create a groupby object once so we can efficiently filter df_b inside the loop
# good idea if df_b is considerably large and has many different IDs
gdf_b = df_b.groupby('ID')
b_IDs = gdf_b.indices # returns a dictionary with grouped rows {ID: arr(integer-indices)}

matched = [] # so we can collect matched rows from df_b
# iterate over rows with `.itertuples()`, more efficient than iterating range(len(df_a))
for i, ID, date in df_a.itertuples():
    if ID in b_IDs:
        gID = gdf_b.get_group(ID) # get the filtered df_b
        inrange = gID.Start_Date.le(date) & gID.End_Date.ge(date)
        if any(inrange):
            matched.append(
                gID.loc[inrange.idxmax()] # get the first row with date inrange
                .values[1:] # use the array without column indices and slice `ID` out
            )
        else:
            matched.append([np.nan] * (df_b.shape[1] - 1)) # no date inrange, fill with NaNs
    else:
        matched.append([np.nan] * (df_b.shape[1] - 1)) # no ID match, fill with NaNs
df_c = df_a.join(pd.DataFrame(matched, columns=df_b.columns[1:]))
print(df_c)