训练LSTM模型时tensorflow.python.framework.errors_impl.AlreadyExistsError

时间:2020-08-23 17:19:45

标签: python tensorflow keras lstm

在使用LSTM给出一系列单词的情况下,我正在尝试在keras中创建一个猜测下一个单词的机器学习模型。这是我的模型的代码:

gen=Sequential()
gen.add(Embedding(vocab_size,embed_dim))
gen.add(LSTM(vocab_size,activation='softmax'))
gen.compile(loss='categorical_crossentropy',optimizer='adam')
gen.summary()
(X_train, X_test, Y_train, Y_test)=train_test_split(X,Y,test_size=.2)
gen.fit(X_train,Y_train,validation_data=(X_test,Y_test),batch_size=batch_size,epochs=epochs)

我的X数据是填充整数数组的数组,例如:[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59, 73, 4],而我的Y是一个热向量,其长度为我的唱头大小(在这种情况下为1994)。运行上面的代码将创建以下输出:

2020-08-23 11:19:34.390012: W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not 

load dynamic library 'nvcuda.dll'; dlerror: nvcuda.dll not found
2020-08-23 11:19:34.391222: E tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: UNKNOWN ERROR (303)
2020-08-23 11:19:34.405184: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:169] retrieving CUDA diagnostic information for host: LAPTOP-J9AD5M4U
2020-08-23 11:19:34.406474: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:176] hostname: LAPTOP-J9AD5M4U
2020-08-23 11:19:34.407916: I tensorflow/core/platform/cpu_feature_guard.cc:143] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-08-23 11:19:34.695283: I tensorflow/compiler/xla/service/service.cc:168] XLA service 0x20c4fc4a980 initialized for platform Host (this does not guarantee that XLA will be used). Devices:
2020-08-23 11:19:34.696499: I tensorflow/compiler/xla/service/service.cc:176]   StreamExecutor device (0): Host, Default Version
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, None, 32)          75040     
_________________________________________________________________
lstm (LSTM)                  (None, 2345)              22305640  
=================================================================
Total params: 22,380,680
Trainable params: 22,380,680
Non-trainable params: 0
_________________________________________________________________
2020-08-23 11:20:30.730043: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:30.943137: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:31.469228: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:32.787365: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:34.014073: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:34.752033: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:35.980107: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:36.790928: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:37.396431: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:38.314946: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:39.111772: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:39.859069: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:40.938812: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:42.485426: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
2020-08-23 11:20:43.183461: W tensorflow/core/framework/op_kernel.cc:1753] OP_REQUIRES failed at variable_ops.cc:104 : Already exists: Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
Traceback (most recent call last):
  File "C:\Users\jsmith\Desktop\Code\JohnWorkspaces\Machine_Learning\Next Word\train.py", line 45, in <module>
    gen.fit(X_train,Y_train,validation_data=(X_test,Y_test),batch_size=batch_size,epochs=epochs)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py", line 66, in _method_wrapper
    return method(self, *args, **kwargs)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\keras\engine\training.py", line 848, in fit
    tmp_logs = train_function(iterator)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py", line 580, in __call__
    result = self._call(*args, **kwds)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\def_function.py", line 644, in _call
    return self._stateless_fn(*args, **kwds)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\function.py", line 2420, in __call__
    return graph_function._filtered_call(args, kwargs)  # pylint: disable=protected-access
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\function.py", line 1665, in _filtered_call
    self.captured_inputs)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\function.py", line 1746, in _call_flat
    ctx, args, cancellation_manager=cancellation_manager))
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\function.py", line 598, in call
    ctx=ctx)
  File "C:\Users\jsmith\anaconda3\lib\site-packages\tensorflow\python\eager\execute.py", line 60, in quick_execute
    inputs, attrs, num_outputs)
tensorflow.python.framework.errors_impl.AlreadyExistsError:  Resource __per_step_0/gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var/struct tensorflow::TemporaryVariableOp::TmpVar
     [[{{node gradient_tape/sequential/lstm/while/sequential/lstm/while_grad/body/_354/gradients/AddN_6/tmp_var}}]] [Op:__inference_train_function_3777]

Function call stack:
train_function

有时它会分批训练,然后得到错误,而其他时候它会在根本不进行任何学习之前生成错误。我不知道它是否与LSTM的输入和输出形状有关,但是我希望这是否会在gen.compile而不是gen.fit上出现。

1 个答案:

答案 0 :(得分:0)

所以我只是尝试了一个实验,发现它是LSTM的输出形状,并具有较小的输出长度,然后使用密集层进行扩展可以消除错误。