重塑数据集以正确大小

时间:2020-08-22 04:44:59

标签: python tensorflow machine-learning scikit-learn computer-vision

我正在尝试学习tensorflow,并尝试从sklearn导入手写数据集,但出现以下错误:

ValueError: Input 0 of layer conv2d is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 1797, 64]

我的代码:

X,y = load_digits(return_X_y=True)

X = X/255.0

model = Sequential()
model.add(Conv2D(64,(3,3),input_shape=X.shape))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))

什么是正确的形状?

2 个答案:

答案 0 :(得分:0)

Conv2D层需要以下形状的输入:(num_examples, height, width, channels)。您正在寻找Conv1D图层,因为您输入的形状(根据错误)的形状为(num_examples, height, width)

答案 1 :(得分:0)

load_digits返回一个展平的数组,因此您需要将其重塑为8x8并取消挤压。

import tensorflow as tf
from sklearn import datasets
from tensorflow.keras.layers import *

X,y = datasets.load_digits(return_X_y=True)

X = X/255.0

X = X.reshape(-1, 8, 8, 1)

model = tf.keras.Sequential()
model.add(Conv2D(64,(3,3),input_shape=X.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=(2,2)))

model.build(input_shape=(8, 8, 1))

model(X)
<tf.Tensor: shape=(1797, 3, 3, 64), dtype=float32, numpy=
array([[[[0.00000000e+00, 0.00000000e+00, 1.79972278e-03, ...,
          3.92661383e-03, 0.00000000e+00, 2.93043372e-03],
         [3.34757613e-03, 0.00000000e+00, 0.00000000e+00, ...,
          4.03874973e-03, 0.00000000e+00, 0.00000000e+00],
         [5.52046159e-03, 1.12290974e-04, 0.00000000e+00, ...,
          0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]]