我正在寻找Python / Java代码来查找Elliot Waves:
我也正在寻找用于图表模式识别的Python / Java代码,这是由autochartist和模式资源管理器完成的。请参阅以下链接:
任何帮助都会很棒。
答案 0 :(得分:2)
这是一个C ++版本,您可以很容易地将其移植到Java。
从这里开始:https://sourceforge.net/projects/ewavetrade/files/
// ewave_lib.cpp
//
/*
* Implementation Of Glen Neely-Mastering Elliot Wave
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*!
\file ewave_lib.cpp
\brief Elliot Wave Engine
\author Ray Rope <sendyourdollars@hotmail.com>, Johan Sˆrensen <johanps@users.sourceforge.net>
*/
#include <stdafx.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "ewave_lib.h"
#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif
const float phi = 0.618033989f;
const float phi_precision = phi * 0.02f;
/////////////////////////////////////////////////////////////////////////////
WaveVector::size_type EW_BuildMonoWaves(const PriceNodeVec& pricenodes, WaveVector& monowaves)
{
const int num_nodes = pricenodes.size();
int start = 0;
int in_index = 1;
float direction; // >0 means up, <0 means down
float next_dir;
if (num_nodes < 2)
return 0;
// the first monowave starts at our first data point
direction = (pricenodes[1].price - pricenodes[0].price);
while (in_index < num_nodes)
{
// find out where the current monowave ends
while (in_index < num_nodes - 1)
{
next_dir = (pricenodes[in_index+1].price - pricenodes[in_index].price);
if (direction * next_dir < 0.0f)
break;
in_index++;
}
monowaves.push_back(WaveNode(&pricenodes, start, in_index));
direction = next_dir;
start = in_index++;
} // while
return monowaves.size();
}
/////////////////////////////////////////////////////////////////////////////
static int longest_m0_index = -1;
static int longest_m0_size = 1;
static int longest_m2_index = -1;
static int longest_m2_size = 1;
// Given "M1", find the monowave, or wave group, denoted M2
// note that when the resulting M2 is a group, it will encompass three or more waves in the input vector
bool EW_FindM2(const PolyWaveVec& waves, const WaveNode& M1, int m1, WaveNode& M2)
{
bool bFound = false;
float m1start = M1.StartPrice();
float m1end = M1.EndPrice();
float m1high = max(m1start, m1end);
float m1low = min(m1start, m1end);
float m2high = m1low;
float m2low = m1high;
int extreme_low_index = -1;
int extreme_high_index = -1;
// note that the m1 input-parameter may be an in-exact hint as to where M1 ends,
// we have to find the mono wave that corresponds to the wave (or group) that corresponds to M1 for the moment
for (; m1 < waves.size(); m1++)
if (waves[m1].mEndIndex == M1.mEndIndex)
break;
int i;
for (i = m1 + 1; i < waves.size(); i++)
{
if (waves[i].EndPrice() > m1high || waves[i].EndPrice() < m1low)
{
bFound = true;
break;
}
if (waves[i].EndPrice() > m2high)
m2high = waves[i].EndPrice(), extreme_high_index = i;
if (waves[i].EndPrice() < m2low)
m2low = waves[i].EndPrice(), extreme_low_index = i;
} // while
int n = i - m1;
if (n > 2)
{
// if it took more than two monowaves to get out the the m1 range,
// then there was a turn somewhere, and the end of m2 is at the "extreme" index
// and m2 must always consist of an odd number of monowaves
if (((extreme_low_index - m1) %2) != 0)
i = extreme_low_index;
else
if (((extreme_high_index - m1) %2) != 0)
i = extreme_high_index;
else
{
TRACE("EW_FindM2: problem finding m2 for m1 ending at %d\n", M1.EndDate());
}
}
else
if (n == 2)
{
i = m1 + 1; // m2 is confirmed complete somewhere within m1, since m3 exceeds m1 high/low
}
// else only remaining alternative is that m2 retraced m1 completely itself, thus i = m1 + 1
// just for fun, keep track of where we found the most intricate m2
n = i - m1;
if (n > longest_m2_size)
{
longest_m2_size = n;
longest_m2_index = m1;
}
// if bFound is false, then the returned M2 is only partially completed
M2.mpPriceNodeVec = &waves.m_PriceNodes;
M2.mStartIndex = M1.mEndIndex;
if (i < waves.size())
M2.mEndIndex = waves[i].mEndIndex;
else
M2.mEndIndex = waves.m_PriceNodes.size();
return bFound;
}
// Given "m1", find the monowave, or wave group, denoted M0
// note that when the resulting M0 is a group, it will encompass three or more waves in the input vector
bool EW_FindM0(const PolyWaveVec& waves, const WaveNode& M1, int m1, WaveNode& M0)
{
bool bFound = false;
float m1start = M1.StartPrice();
float m1end = M1.EndPrice();
float m1high = max(m1start, m1end);
float m1low = min(m1start, m1end);
float m0high = m1low;
float m0low = m1high;
int extreme_low_index = -1;
int extreme_high_index = -1;
// note that the m1 input-parameter may be an in-exact hint as to where M1 begins,
// we have to find the mono wave that corresponds to the wave (or group) that corresponds to M1 for the moment
for (; m1 > 0; m1--)
if (waves[m1].mStartIndex == M1.mStartIndex)
break;
int i;
for (i = m1 - 1; i >= 0; i--)
{
if (waves[i].StartPrice() > m1high || waves[i].StartPrice() < m1low)
{
bFound = true;
break;
}
if (waves[i].StartPrice() > m0high)
m0high = waves[i].StartPrice(), extreme_high_index = i;
if (waves[i].StartPrice() < m0low)
m0low = waves[i].StartPrice(), extreme_low_index = i;
} // while
int n = m1 - i;
if (n > 2)
{
// if it took more than two monowaves to get out the the m1 range,
// then there was a turn somewhere, and the start of m0 is at the "extreme" index
// and m0 must always consist of an odd number of monowaves
if (((m1 - extreme_low_index) %2) != 0)
i = extreme_low_index;
else
if (((m1 - extreme_high_index) %2) != 0)
i = extreme_high_index;
else
{
TRACE("EW_FindM0: problem finding m0 for m1 starting at %d\n", M1.StartDate());
}
}
else
if (n == 2)
{
i = m1 - 1; // m0 is confirmed complete somewhere within m1, since m-1 exceeds m1 high/low
}
// else only remaining alternative is that m0 retraced m1 completely itself, thus i = m1 - 1
// just for fun, keep track of where we found the most intricate m2
n = m1 - i;
if (n > longest_m0_size)
{
longest_m0_size = n;
longest_m0_index = m1;
}
M0.mpPriceNodeVec = &waves.m_PriceNodes;
M0.mEndIndex = M1.mStartIndex;
if (i >= 0)
M0.mStartIndex = waves[i].mStartIndex;
else
M0.mStartIndex = -1;
return bFound;
}
//
// Look at each individual monowave by itself (mentally consider it "m1"), and determine its
// relationship with neighbouring monowaves (or monowave groups) "m0" and "m2" to determine
// which Retracement Rule should be applied
//
void EW_ProcessRulesOfRetracement(PolyWaveVec& waves)
{
WaveNode M0(&waves.m_PriceNodes, 0, 0);
WaveNode M2(&waves.m_PriceNodes, 0, 0);
WaveNode M3(&waves.m_PriceNodes, 0, 0);
float m3retracement;
if (waves.size() < 2)
return;
longest_m0_index = -1;
longest_m0_size = 1;
longest_m2_index = -1;
longest_m2_size = 1;
for (int m1 = 0; m1 < waves.size(); m1++)
{
if (EW_FindM0(waves, waves[m1], m1, M0))
waves[m1].m0StartIndex = M0.mStartIndex;
if (EW_FindM2(waves, waves[m1], m1, M2))
waves[m1].m2EndIndex = M2.mEndIndex;
waves[m1].mM0Retracement = 0.0f;
waves[m1].mM2Retracement = 0.0f;
if (M2.mEndIndex < waves.m_PriceNodes.size())
{
waves[m1].mM2Retracement = fabs(M2.LengthInPrice() / waves[m1].LengthInPrice());
if (waves[m1].mM2Retracement < (1.0f - phi))
waves[m1].mRetracementRule = 1;
else
if (waves[m1].mM2Retracement < (phi - phi_precision))
waves[m1].mRetracementRule = 2;
else
if (waves[m1].mM2Retracement < (phi + phi_precision))
waves[m1].mRetracementRule = 3;
else
if (waves[m1].mM2Retracement < 1.0f)
waves[m1].mRetracementRule = 4;
else
if (waves[m1].mM2Retracement < (1.0f + phi))
waves[m1].mRetracementRule = 5;
else
if (waves[m1].mM2Retracement <= (2.0f + phi))
waves[m1].mRetracementRule = 6;
else
waves[m1].mRetracementRule = 7;
}
if (M0.mStartIndex >= 0)
{
waves[m1].mM0Retracement = fabs(M0.LengthInPrice() / waves[m1].LengthInPrice());
switch (waves[m1].mRetracementRule)
{
case 1:
if (waves[m1].mM0Retracement < phi)
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement < (1.0f + phi))
waves[m1].mCondition = 'c';
else
waves[m1].mCondition = 'd';
break;
case 2:
if (waves[m1].mM0Retracement < (1.0f - phi))
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < phi)
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'c';
else
if (waves[m1].mM0Retracement <= (1.0f + phi))
waves[m1].mCondition = 'd';
else
waves[m1].mCondition = 'e';
break;
case 3:
if (waves[m1].mM0Retracement < (1.0f - phi))
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < phi)
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'c';
else
if (waves[m1].mM0Retracement < (1.0f + phi))
waves[m1].mCondition = 'd';
else
if (waves[m1].mM0Retracement <= (2.0f + phi))
waves[m1].mCondition = 'e';
else
waves[m1].mCondition = 'f';
break;
case 4:
if (waves[m1].mM0Retracement < (1.0f - phi))
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement < (1.0f + phi))
waves[m1].mCondition = 'c';
else
if (waves[m1].mM0Retracement <= (2.0f + phi))
waves[m1].mCondition = 'd';
else
waves[m1].mCondition = 'e';
// figure out category depending on M3!
m3retracement = 0.0f;
if (EW_FindM2(waves, M2, m1, M3))
m3retracement = fabs(M3.LengthInPrice() / M2.LengthInPrice());
if (m3retracement >= 1.0f && m3retracement < (1.0f + phi))
waves[m1].mCategory = 1;
else
if (m3retracement >= (1.0f + phi) && m3retracement <= (2.0f + phi))
waves[m1].mCategory = 2;
else
if (m3retracement > (2.0f + phi))
waves[m1].mCategory = 3;
break;
case 5:
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < (1.0f + phi))
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement <= (2.0f + phi))
waves[m1].mCondition = 'c';
else
waves[m1].mCondition = 'd';
break;
case 6:
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < (1.0f + phi))
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement <= (2.0f + phi))
waves[m1].mCondition = 'c';
else
waves[m1].mCondition = 'd';
break;
case 7:
if (waves[m1].mM0Retracement < 1.0f)
waves[m1].mCondition = 'a';
else
if (waves[m1].mM0Retracement < (1.0f + phi))
waves[m1].mCondition = 'b';
else
if (waves[m1].mM0Retracement <= (2.0f + phi))
waves[m1].mCondition = 'c';
else
waves[m1].mCondition = 'd';
break;
// default: don't care
} // switch
}
} // for
if (longest_m0_index > 0)
TRACE("longest m0 at %s : %d components\n", waves[longest_m0_index].StartDate().Format(), longest_m0_size);
if (longest_m2_index > 0)
TRACE("longest m2 at %s : %d components\n", waves[longest_m2_index].EndDate().Format(), longest_m2_size);
}
/////////////////////////////////////////////////////////////////////////////
static int ReportNewPeriod(const ETime& highDate,
const ETime& lowDate,
int valuesPerPeriod,
PriceNode& tempNode, // in-out
PriceNodeVec& outVec)
{
int newOutNodes = 0;
if (tempNode.high == FLT_MIN)
tempNode.high = tempNode.close;
if (tempNode.low == FLT_MAX)
tempNode.low = tempNode.close;
if (valuesPerPeriod != 2)
{ // report one value per period, either mean of high-low, or close
if (valuesPerPeriod == 1)
tempNode.price = (tempNode.low + tempNode.high) / 2.0f;
else
tempNode.price = tempNode.close;
outVec.push_back(tempNode);
newOutNodes++;
}
else
{ // report two values (high and low) in the order they occur within the period
if (highDate == lowDate)
{
tempNode.price = (tempNode.low + tempNode.high) / 2.0f;
outVec.push_back(tempNode);
newOutNodes++;
TRACE("Ambiguous high/low at %s\n", tempNode.date.Format());
}
else
{
PriceNode tempNode2 = tempNode;
tempNode.date = lowDate;
tempNode.price = tempNode.open = tempNode.high = tempNode.close = tempNode.low;
tempNode.volume /= 2.0f;
tempNode2.date = highDate;
tempNode2.price = tempNode2.open = tempNode2.low = tempNode2.close = tempNode2.high;
tempNode2.volume /= 2.0f;
if (highDate < lowDate)
{
outVec.push_back(tempNode2);
outVec.push_back(tempNode);
}
else
{
outVec.push_back(tempNode);
outVec.push_back(tempNode2);
}
newOutNodes += 2;
}
} // else, two values per period
tempNode.clear();
tempNode.high = FLT_MIN;
tempNode.low = FLT_MAX;
return newOutNodes;
}
int EW_MergeDataIntoPeriods(const PriceNodeVec& inVec, int interval, int valuesPerPeriod, PriceNodeVec& outVec, std::list<int>* pAmbiguities)
{
const int inNodes = inVec.size();
int newOutNodes = 0;
PriceNodeVec::const_iterator inIt = inVec.begin();
PriceNodeVec::iterator outIt = outVec.begin();
ETime oldDate = 0;
ETime date, highDate, lowDate;
PriceNode tempNode;
tempNode.clear();
tempNode.high = FLT_MIN;
tempNode.low = FLT_MAX;
for (; inIt != inVec.end(); inIt++)
{
const PriceNode& inNode = (*inIt);
date = inNode.date;
if (oldDate == 0)
oldDate = date;
bool bNewPeriod = false;
if (interval < DAYSECONDS)
bNewPeriod = (oldDate.GetSecondsWithinDay() / interval) != (date.GetSecondsWithinDay() / interval); // consolidate to intraday periods (e.g. hour)
else
if (interval == DAYSECONDS)
bNewPeriod = (oldDate.GetDay() != date.GetDay()); // consolidate to days
else
if (interval == WEEKSECONDS)
bNewPeriod = (date.GetDayOfWeek() < oldDate.GetDayOfWeek()); // consolidate to weeks
else
// if (interval == MONTHSECONDS)
bNewPeriod = (oldDate.GetMonth() != date.GetMonth()); // consolidate to months
if (bNewPeriod)
{
tempNode.date = oldDate;
int n = ReportNewPeriod(highDate, lowDate, valuesPerPeriod, tempNode, outVec);
newOutNodes += n;
if (n < 2 && valuesPerPeriod == 2 && pAmbiguities)
pAmbiguities->push_back(newOutNodes);
} // if bNewPeriod
//update period high low last and volume
if ((inNode.high > tempNode.high) && (inNode.high > 0.0f))
tempNode.high = inNode.high, highDate = date;
else
if ((inNode.close > tempNode.high) && (inNode.close > 0.0f))
tempNode.high = inNode.close, highDate = date;
if ((inNode.low < tempNode.low) && (inNode.low > 0.0f))
tempNode.low = inNode.low, lowDate = date;
else
if ((inNode.close < tempNode.low) && (inNode.close > 0.0f))
tempNode.low = inNode.close, lowDate = date;
if (inNode.close > 0.0f)
tempNode.close = inNode.close;
tempNode.volume += inNode.volume;
if (tempNode.open == 0.0f)
{
if (inNode.open != 0.0f)
tempNode.open = inNode.open;
else
// this is a bit wrong, but if there's no open values in the indata, this is better than nothing; better the more fine-grained the indata is
if (inNode.close != 0.0f)
tempNode.open = inNode.close;
}
oldDate = date;
} // while
// was there an unfinished period?
if (tempNode.close > 0.0f)
{
tempNode.date = oldDate;
int n = ReportNewPeriod(highDate, lowDate, valuesPerPeriod, tempNode, outVec);
newOutNodes += n;
if (n < 2 && valuesPerPeriod == 2 && pAmbiguities)
pAmbiguities->push_back(newOutNodes);
}
return newOutNodes;
}
int EW_GetAveragePeriod(const PriceNodeVec& vec)
{
if (vec.size() < 2)
return 0;
double sum = 0.0;
PriceNodeVec::const_iterator it = vec.begin();
ETime t = (*it++).date;
for (; it != vec.end(); it++)
{
sum += (*it).date.Diff(t, 1, WEEKDAY_ONLY);
t = (*it).date;
}
return (int)(sum / (vec.size() - 1));
}
/////////////////////////////////////////////////////////////////////////////
// Experimental procedures
std::pair<int, int>
EW_FindSimilarWaveSequence(const PolyWaveVec& waves, int m1, int& startIndex, int lengthThreshold, float qmax)
{
PolyWaveVec m1cache(waves.m_PriceNodes); // this stores M1, M0, M-1, M-2 etc (in reverse order)
std::pair<int, int> IndexAndLength(0, 0);
int len;
float qmin = 1.0f / qmax;
// populate the cache containing the M0, M-1, M-2 etc sequence we're looking for
WaveNode M1 = waves[m1];
m1cache.push_back(waves[m1]);
WaveNode& M1ref = m1cache[0];
for (int i=0; i<10; i++)
{
WaveNode M0;
if (EW_FindM0(waves, M1, m1, M0))
{
M1ref.mM0Retracement = fabs(M0.LengthInPrice() / M1ref.LengthInPrice());
m1cache.push_back(M0);
M1ref = m1cache[ m1cache.size()-1 ];
}
else
break;
M1 = M0;
}
do
{
if (startIndex == m1)
continue;
if (waves[startIndex].LengthInPrice() * waves[m1].LengthInPrice() < 0.0f)
continue; // not looking at a wave in the same direction
float q = 9999.0f;
len = 0;
WaveNode Mc1 = waves[startIndex];
WaveNode Mc0;
if (EW_FindM0(waves, Mc1, startIndex, Mc0))
{
Mc1.mM0Retracement = fabs(Mc0.LengthInPrice() / Mc1.LengthInPrice());
q = fabs(log10(Mc1.mM0Retracement) - log10(m1cache[len].mM0Retracement));
}
else break;
while ((startIndex-len) >= 0 && (q <= qmax))
// while ((startIndex-len) >= 0 && waves[startIndex-len].mRetracementRule == waves[m1-len].mRetracementRule)
{
len++;
Mc1 = Mc0;
if (EW_FindM0(waves, Mc1, startIndex, Mc0)) // it's ok to supply the "wrong" startindex; it's just used as searching start anyway
{
Mc1.mM0Retracement = fabs(Mc0.LengthInPrice() / Mc1.LengthInPrice());
q = fabs(log10(Mc1.mM0Retracement) - log10(m1cache[len].mM0Retracement));
}
else
break;
}
if (len >= lengthThreshold)
{
startIndex -= len;
TRACE("EW_FindMatchingWaveSequence: found match for m1=%d, len %d at %d\n", m1, len, startIndex);
break;
}
} while (--startIndex > 0);
return std::pair<int, int>(startIndex, len);
}
int EW_FindSimilarWaveSequences(const PolyWaveVec& waves, int m1, std::map<int, int>& matches)
{
std::map<int, int> sizes;
int startIndex = waves.size() - 1;
int numMatches = 0;
int lengthThreshold = 3;
float qmax = 0.2f; // sqrt(2.0);
while (startIndex > 0)
{
std::pair<int, int> IndexAndLength = EW_FindSimilarWaveSequence(waves, m1, startIndex, lengthThreshold, qmax);
startIndex--;
if (IndexAndLength.second >= lengthThreshold)
{
numMatches++;
matches.insert(IndexAndLength);
sizes[IndexAndLength.second] += 1;
}
}
while (numMatches > 10 && sizes.size() > 0)
{
int smallestMatch = (*sizes.begin()).first;
sizes.erase(sizes.begin());
std::map<int, int>::iterator it = matches.begin();
while (it != matches.end() && numMatches > 10)
{
if ((*it).second <= smallestMatch)
{
it = matches.erase(it);
numMatches--;
}
else
it++;
}
}
return numMatches;
}