我的数据框的列非常不一致。例如:
index
我正在尝试拆分CM列。我尝试了一下,这让我非常接近:
df = pd.DataFrame(columns=["CID", "CM"], data=[['xxx-1','skill_start=skill1,skill2,||skill_complete=skill1,'],['xxx-2','survey=1||skill_start=skill1,skill3||skill_complete=skill3'],['xxx-3','skill_start=skill2,skill3||skill_complete=skill2,skill3||abandon_custom=0']])
但是因为数据不一致,所以列不能整齐地排列。如何以一种分类的方式将其拆分?
所需输出示例:
df = df.join(metrics['CM'].str.split('\|\|', expand=True).add_prefix('CM'))
答案 0 :(得分:0)
您使用多个定界符尝试过此操作,不确定是否是您要找的内容:
df1 = df['CM'].str.split('\|\||,|=', expand=True).add_prefix('CM_')
df = pd.concat([df['CID'], df1], axis=1)
print(df)
CID CM_0 CM_1 CM_2 CM_3 CM_4 CM_5 CM_6 CM_7
0 xxx-1 skill_start skill1 skill2 skill_complete skill1 None
1 xxx-2 survey 1 skill_start skill1 skill3 skill_complete skill3 None
2 xxx-3 skill_start skill2 skill3 skill_complete skill2 skill3 abandon_custom 0
答案 1 :(得分:0)
我解决了!
解决方案是使用正则表达式提取器创建一个仅具有我要查找的值的新数据框,在需要的地方使用get_dummies,然后将其重新连接到主数据框。
skill_start = df['CM'].str.extract(r'skill_start=(?P<skill_start>.*?)\|\|')
surveys = df['CM'].str.extract(r'survey_response=(?P<survey_response>[1|2|3|4|5])')
skill_complete = df['CM'].str.extract(r'skill_complete=(?P<skill_complete>.*?)\|\|')
escalated_custom = df['CM'].str.extract(r'escalated_custom=(?P<escalated_custom>[0|1])')
abandoned_custom = df['CM'].str.extract(r'abandoned_custom=(?P<abandoned_custom>[0|1])')
skill_start = pd.concat([skill_start,skill_start.skill_start.str.get_dummies(sep=',')],1)
skill_start = skill_start.add_prefix('skill_start:')
skill_complete = pd.concat([skill_complete,skill_complete.skill_complete.str.get_dummies(sep=',')],1)
skill_complete = skill_complete.add_prefix('skill_complete:')
new_df = df.join(surveys).join(skill_start).join(skill_complete).join(escalated_custom).join(abandoned_custom)