我正在尝试绘制两个熊猫系列
Series A
Private 11210
Self-emp-not-inc 1321
Local-gov 1043
? 963
State-gov 683
Self-emp-inc 579
Federal-gov 472
Without-pay 7
Never-worked 3
Name: workclass, dtype: int64
Series B
Self-emp-not-inc 1321
Local-gov 1043
State-gov 683
Self-emp-inc 579
Federal-gov 472
Without-pay 7
Never-worked 3
Name: workclass, dtype: int64
g = sns.barplot(x=A.index, y=A.values, color='green', ax=faxes[ax_id]) # some subplot
g.set_xticklabels(g.get_xticklabels(), rotation=30)
sns.barplot(x=B.index, y=B.values, color='red', ax=faxes[ax_id])
第一个情节按预期绘制:
但是,一旦我绘制了第二个,就会出问题(几个小节消失,标签不正确,等等)。
部分相关...如何在y轴上使用对数(11K与3完全隐藏了较低的数字)
答案 0 :(得分:1)
您可以将A和B连接到索引。出现在一个而不出现在另一行中的行将用const xpAthForthePageMenuItem = (PageToNavigateTo) => {
return `(//div[contains(text(),"${PageToNavigateTo}")])[2]";
}
const elem = await ${`xpAthForthePageMenuItem('somepage')`};
await elem.click();
或NaN
填充,并且不会在条形图中显示。
NA
串联的数据框如下:
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
A = pd.Series({'Private': 11210,
'Self-emp-not-inc': 1321,
'Local-gov': 1043,
'?': 963,
'State-gov': 683,
'Self-emp-inc': 579,
'Federal-gov': 472,
'Without-pay': 7,
'Never-worked': 3}, name='workclass')
B = pd.Series({'Self-emp-not-inc': 1321,
'Local-gov': 1043,
'State-gov': 683,
'Self-emp-inc': 579,
'Federal-gov': 472,
'Without-pay': 7,
'Never-worked': 3}, name='workclass')
df = pd.concat([A.rename('workclass A'), B.rename('workclass B')], axis=1)
ax = df.plot.bar(rot=30, color=['darkgreen', 'crimson'])
plt.tight_layout()
plt.show()
请注意,整数不能为 workclass A workclass B
Private 11210 NaN
Self-emp-not-inc 1321 1321.0
Local-gov 1043 1043.0
? 963 NaN
State-gov 683 683.0
Self-emp-inc 579 579.0
Federal-gov 472 472.0
Without-pay 7 7.0
Never-worked 3 3.0
,因此B会自动转换为浮点类型。
答案 1 :(得分:0)
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
A = {'Private':11210,
'Self-emp-not-inc':1321,
'Local-gov':1043,
'?':963,
'State-gov':683,
'Self-emp-inc':579,
'Federal-gov':472,
'Without-pay':7,
'Never-worked':3}
B = {'Self-emp-not-inc':1321,
'Local-gov':1043,
'State-gov':683,
'Self-emp-inc':579,
'Federal-gov':472,
'Without-pay':7,
'Never-worked':3}
df = pd.concat([pd.Series(A, name='A'), pd.Series(B, name='B')], axis=1)
sns.barplot(y=df.A.values, x=df.index, color='b', alpha=0.4, label='A')
sns.barplot(y=df.B.values, x=df.index, color='r', alpha=0.4, label='B', bottom=df.A.values)
plt.yscale('log')