使用滚动窗口在一个图中绘制预测值和实际值

时间:2020-08-14 15:25:15

标签: r plot regression forecasting rolling-computation

我有一个代码,将输入作为收益率价差(因变量)和远期汇率(因变量),并操作auto.arima来获取定单。之后,我预计接下来的25个日期(forc.horizo​​n)。我的训练数据是前600(训练)。然后,我将时间窗移动25个日期,这意味着使用数据从26到625,估计auto.arima,然后将数据从626预测到650,依此类推。我的数据集是2298行(日期)和30列(成熟度)。

我要存储所有预测,然后在同一图中绘制预测值和实际值。

这是我所拥有的代码,但是它不会以稍后绘制的方式存储预测。

forecast.func <- function(NS.spread, ind.v, maturity, training, forc.horizon){
  
  NS.spread <- NS.spread/100
  forc <- c()
  j <- 0
  
  for(i in 1:floor((nrow(NS.spread)-training)/forc.horizon)){
    
    
    # test data
    y <- NS.spread[(1+j):(training+j) , maturity]
    f <- ind.v[(1+j):(training+j) , maturity]
        
    # auto- arima
    c <- auto.arima(y, xreg = f, test= "adf")

    
    # forecast
    e <- ind.v[(training+j+1):(training+j+forc.horizon) , maturity]
    h <- forecast(c, xreg = lagmatrix(e, -1))
    
    forc <- c(forc, list(h))
    
    j <- j + forc.horizon

  }
  
  return(forc)
}


a <- forecast.func(spread.NS.JPM, Forward.rate.JPM, 10, 600, 25)
lapply(a, plot)


这是我两个数据集的链接: https://drive.google.com/drive/folders/1goCxllYHQo3QJ0IdidKbdmfR-DZgrezN?usp=sharing

1 个答案:

答案 0 :(得分:0)

在结尾处查找有关如何使用 XREG 使用 DAILY DATA 处理 AUTO.ARIMA模型的完整功能示例具有滚动开始时间的FOURIER系列,并经过交叉验证的培训和测试。


  1. 没有可复制的示例,没有人可以帮助您,因为他们无法运行您的代码。您需要提供数据。 :-(

  1. 即使不是讨论统计问题的StackOverflow的一部分,为什么不对auto.arima进行xreg而不是对残差进行lm + auto.arima的处理呢?特别是,考虑到最终的预测方式,这种训练方法看起来确实是错误的。考虑使用:
fit <- auto.arima(y, xreg = lagmatrix(f, -1))
h <- forecast(fit, xreg = lagmatrix(e, -1))

auto.arima会自动以最大可能性计算最佳参数。


  1. 关于您的编码问题。

forc <- c()应该在for循环之外,否则在每次运行时,您都会删除以前的结果。

j <- 0相同:在每次运行时将其重新设置为0。如果需要在每次运行时更改其值,请将其置于外部。

forecast的输出是类forecast的对象,它实际上是list的类型。因此,您将无法有效使用cbind

我认为,您应该通过以下方式创建forcforc <- list()

并以此方式创建最终结果列表:

forc <- c(forc, list(h)) # instead of forc <- cbind(forc, h)

这将创建forecast类的对象列表。

然后可以通过访问每个对象或使用for来使用lapply循环绘制它们。

lapply(output_of_your_function, plot)

据我所知,没有可重复的示例。


最终编辑

完整功能示例

在这里,我尝试从我们写的上百万条评论中总结出一个结论。

使用您提供的数据,我构建了一个代码,可以处理您需要的所有内容。

从训练,测试到模型,直到预测并最终绘制出其中X轴随您的评论之一所要求的时间而绘制。

我删除了for循环。 lapply更适合您的情况。

如果需要,可以离开傅立叶级数。 That's how Professor Hyndman建议处理每日时间序列。

所需的功能和库:

# libraries ---------------------------

library(forecast)
library(lubridate)


# run model -------------------------------------

.daily_arima_forecast <- function(init, training, horizon, tt, ..., K = 10){
    
    # create training and test
    tt_trn <- window(tt, start = time(tt)[init]           , end = time(tt)[init + training - 1])
    tt_tst <- window(tt, start = time(tt)[init + training], end = time(tt)[init + training + horizon - 1])
    
    # add fourier series [if you want to. Otherwise, cancel this part]
    fr  <- fourier(tt_trn[,1], K = K)
    frf <- fourier(tt_trn[,1], K = K, h = horizon)
    tsp(fr)  <- tsp(tt_trn)
    tsp(frf) <- tsp(tt_tst)
    tt_trn <- ts.intersect(tt_trn, fr)
    tt_tst <- ts.intersect(tt_tst, frf)
    colnames(tt_tst) <- colnames(tt_trn) <- c("y", "s", paste0("k", seq_len(ncol(fr))))
    
    # run model and forecast
    aa <- auto.arima(tt_trn[,1], xreg = tt_trn[,-1])
    fcst <- forecast(aa, xreg = tt_tst[,-1])
    
    # add actual values to plot them later!
    fcst$test.values <- tt_tst[,1]
    
    # NOTE: since I modified the structure of the class forecast I should create a new class,
    # but I didnt want to complicate your code
    fcst
    
}


daily_arima_forecast <- function(y, x, training, horizon, ...){
    
    # set up x and y together
    tt <- ts.intersect(y, x)
    
    # set up all starting point of the training set [give it a name to recognize them later]
    inits <- setNames(nm = seq(1, length(y) - training, by = horizon))
    
    # remove last one because you wouldnt have enough data in front of it
    inits <- inits[-length(inits)]
    
    # run model and return a list of all your models
    lapply(inits, .daily_arima_forecast, training = training, horizon = horizon, tt = tt, ...)
    
    
}


# plot ------------------------------------------

plot_daily_forecast <- function(x){
    
    autoplot(x) + autolayer(x$test.values)
    
}

有关如何使用先前功能的可复制示例

# create a sample data
tsp(EuStockMarkets) <- c(1991, 1991 + (1860-1)/365.25, 365.25)

# model
models <- daily_arima_forecast(y            = EuStockMarkets[,1], 
                               x            = EuStockMarkets[,2],
                               training     = 600, 
                               horizon      = 25, 
                               K            = 5)


# plot
plots <- lapply(models, plot_daily_forecast)

plots[[1]]

enter image description here

帖子作者示例

# your data
load("BVIS0157_Forward.rda")
load("BVIS0157_NS.spread.rda")

spread.NS.JPM <- spread.NS.JPM / 100


# pre-work [out of function!!!]
set_up_ts <- function(m){
    
    start <- min(row.names(m))
    end   <- max(row.names(m))
    
    # daily sequence
    inds <- seq(as.Date(start), as.Date(end), by = "day")
    
    ts(m, start = c(year(start), as.numeric(format(inds[1], "%j"))), frequency = 365.25)
    
}

mts_spread.NS.JPM    <- set_up_ts(spread.NS.JPM)
mts_Forward.rate.JPM <- set_up_ts(Forward.rate.JPM)

# model
col <- 10
models <- daily_arima_forecast(y            = mts_spread.NS.JPM[, col], 
                               x            = stats::lag(mts_Forward.rate.JPM[, col], -1),
                               training     = 600, 
                               horizon      = 25, 
                               K            = 5) # notice that K falls between ... that goes directly to the inner function


# plot
plots <- lapply(models, plot_daily_forecast)

plots[[5]]

enter image description here