我正在从事的项目需要将两个数据帧沿着带有增量的一行合并在一起。基本上,我需要使用一条带有2D非线性线的数据框,并在沿着该线的另一个数据点中找到数据点,加上或减去一个增量。
import pandas as pd
df1 = pd.read_csv('path/to/df1/data.csv')
df1
x y
0 0.23 0.54
1 0.27 0.95
2 0.78 1.59
...
97 0.12 2.66
98 1.74 0.43
99 0.93 4.23
df2 = pd.read_csv('path/to/df2/data.csv')
df2
x y
0 0.21 0.51
1 0.27 0.35
2 3.45 1.19
...
971 0.94 2.60
982 1.01 1.33
993 0.43 2.43
DELTA = 0.03
coarse_line = find_coarse_line(df1, df2, DELTA)
coarse_line
x y
0 0.21 0.51
1 0.09 2.68
2 0.23 0.49
...
345 1.71 0.45
346 0.96 0.40
347 0.81 1.62
我已经尝试在许多其他Pandas函数中使用df.loc((df['x'] >= BOTLEFT_X) & (df['x'] >= BOTLEFT_Y) & (df['x'] <= TOPRIGHT_X) & (df['y'] <= TOPRIGHT_Y))
,但还没有找到任何可行的方法,而效率却更低(数据集大于200万点)。
答案 0 :(得分:1)
采用了一种使用merge()
的方法,其中x,y已从 good 曲线df1
df1
df2
,生成的坐标也是原来的三倍df1
为参考,以使用pd.cut()
将x和y坐标的良好范围拆分为bin。占坐标总数1/3的垃圾箱运行良好pd.cut()
中再次使用您可以从散点图中看到,在df2
中找到并保持点接近曲线非常合理,
import pandas as pd
import random
import numpy as np
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1,3, sharey=True, sharex=False, figsize=[20,5])
linex = [i for i in range(100)]
liney = [i**2 for i in linex]
df1 = pd.DataFrame({"x":[l*random.uniform(0.95, 1.05) for l in linex],
"y":[l*random.uniform(0.95, 1.05) for l in liney]})
df1.plot("x","y", kind="scatter", ax=ax[0])
df2 = pd.DataFrame({"x":[l*random.uniform(0.5, 1.5) for l in linex*3],
"y":[l*random.uniform(0.5, 1.5) for l in liney*3]})
df2.plot("x","y", kind="scatter", ax=ax[1])
# use bins on x and y axis - both need to be within range to find
bincount = len(df1)//3
xc = pd.cut(df1["x"], bincount).unique()
yc = pd.cut(df1["y"], bincount).unique()
xc = np.sort([intv.left for intv in xc] + [xc[-1].right])
yc = np.sort([intv.left for intv in yc] + [yc[-1].right])
dfm = (df2.assign(
xb=pd.cut(df2["x"],xc, duplicates="drop"),
yb=pd.cut(df2["y"],yc, duplicates="drop"),
).query("~(xb.isna() | yb.isna())") # exclude rows where df2 falls outside of range of df1
.merge(df1.assign(
xb=pd.cut(df1["x"],xc, duplicates="drop"),
yb=pd.cut(df1["y"],yc, duplicates="drop"),
),
on=["xb","yb"],
how="inner",
suffixes=("_l","_r")
)
)
dfm.plot("x_l", "y_l", kind="scatter", ax=ax[2])
print(f"graph 2 pairs:{len(df2)} graph 3 pairs:{len(dfm)}")