是否可以检索函数调用的函数组件?也就是说,是否可以在另一个函数调用上使用as.list(match.call())
。
背景是,我想拥有一个接受函数调用并返回所述函数调用组件的函数。
get_formals <- function(x) {
# something here, which would behave as if x would be a function that returns
# as.list(match.call())
}
get_formals(mean(1:10))
# expected to get:
# [[1]]
# mean
#
# $x
# 1:10
在提供的函数调用中调用get_formals
时,预期结果是match.call()
返回。
mean2 <- function(...) {
as.list(match.call())
}
mean2(x = 1:10)
# [[1]]
# mean2
#
# $x
# 1:10
此问题背后的动机是检查memoise
d函数是否已包含缓存的值。 memoise
具有功能has_cache()
,但需要以特定的方式has_cache(foo)(vals)
调用,例如,
library(memoise)
foo <- function(x) mean(x)
foo_cached <- memoise(foo)
foo_cached(1:10) # not yet cached
foo_cached(1:10) # cached
has_cache(foo_cached)(1:10) # TRUE
has_cache(foo_cached)(1:3) # FALSE
我的目标是在函数调用是否已缓存的情况下记录一些内容。
cache_wrapper <- function(f_call) {
is_cached <- has_cache()() # INSERT SOLUTION HERE
# I need to deconstruct the function call to pass it to has_cache
# basically
# has_cache(substitute(expr)[[1L]])(substitute(expr)[[2L]])
# but names etc do not get passed correctly
if (is_cached) print("Using Cache") else print("New Evaluation of f_call")
f_call
}
cache_wrapper(foo_cached(1:10))
#> [1] "Using Cache" # From the log-functionality
#> 5.5 # The result from the function-call
答案 0 :(得分:6)
您可以使用match.call()
进行参数匹配。
get_formals <- function(expr) {
call <- substitute(expr)
call_matched <- match.call(eval(call[[1L]]), call)
as.list(call_matched)
}
get_formals(mean(1:10))
# [[1]]
# mean
#
# $x
# 1:10
library(ggplot2)
get_formals(ggplot(mtcars, aes(x = mpg, y = hp)))
# [[1]]
# ggplot
#
# $data
# mtcars
#
# $mapping
# aes(x = mpg, y = hp)
library(dplyr)
get_formals(iris %>% select(Species))
# [[1]]
# `%>%`
#
# $lhs
# iris
#
# $rhs
# select(Species)
编辑: 感谢@KonradRudolph的建议!
上面的函数找到 right 函数。它将在get_formals()
的父级范围内搜索,而不在调用者的范围内搜索。更安全的方法是:
get_formals <- function(expr) {
call <- substitute(expr)
call_matched <- match.call(eval.parent(bquote(match.fun(.(call[[1L]])))), call)
as.list(call_matched)
}
match.fun()
对于正确解析被同名非功能对象遮盖的功能很重要。例如,如果mean
被矢量覆盖
mean <- 1:5
get_formals()
的第一个示例将出错,而更新后的版本运行良好。
答案 1 :(得分:3)
如果您不提供所有参数,这是一种从函数中获取默认值的方法:
get_formals <- function(call)
{
f_list <- as.list(match.call()$call)
func_name <- f_list[[1]]
p_list <- formals(eval(func_name))
f_list <- f_list[-1]
ss <- na.omit(match(names(p_list), names(f_list)))
if(length(ss) > 0) {
p_list[na.omit(match(names(f_list), names(p_list)))] <- f_list[ss]
f_list <- f_list[-ss]
}
unnamed <- which(!nzchar(sapply(p_list, as.character)))
if(length(unnamed) > 0)
{
i <- 1
while(length(f_list) > 0)
{
p_list[[unnamed[i]]] <- f_list[[1]]
f_list <- f_list[-1]
i <- i + 1
}
}
c(func_name, p_list)
}
哪个给:
get_formals(rnorm(1))
[[1]]
rnorm
$n
[1] 1
$mean
[1] 0
$sd
[1] 1
get_formals(ggplot2::ggplot())
[[1]]
ggplot2::ggplot
$data
NULL
$mapping
aes()
$...
$environment
parent.frame()
要使其在一个级别上起作用,您可以执行以下操作:
foo <- function(f_call) {
eval(as.call(list(get_formals, call = match.call()$f_call)))
}
foo(mean(1:10))
[[1]]
mean
$x
1:10
$...
答案 2 :(得分:2)
此答案主要基于Allens answer,但实现了有关eval
和eval.parent
函数的Konrads注释。
此外,上面的示例还抛出了一些do.call
以完成cache_wrapper
:
library(memoise)
foo <- function(x) mean(x)
foo_cached <- memoise(foo)
foo_cached(1:10) # not yet cached
#> [1] 5.5
foo_cached(1:10) # cached
#> [1] 5.5
has_cache(foo_cached)(1:10)
#> [1] TRUE
has_cache(foo_cached)(1:3)
#> [1] FALSE
# As answered by Allen with Konrads comment
get_formals <- function(call) {
f_list <- as.list(match.call()$call)
func_name <- f_list[[1]]
# changed eval to eval.parent as suggested by Konrad...
p_list <- formals(eval.parent(eval.parent(bquote(match.fun(.(func_name))))))
f_list <- f_list[-1]
ss <- na.omit(match(names(p_list), names(f_list)))
if(length(ss) > 0) {
p_list[na.omit(match(names(f_list), names(p_list)))] <- f_list[ss]
f_list <- f_list[-ss]
}
unnamed <- which(!nzchar(sapply(p_list, as.character)))
if(length(unnamed) > 0) {
i <- 1
while(length(f_list) > 0) {
p_list[[unnamed[i]]] <- f_list[[1]]
f_list <- f_list[-1]
i <- i + 1
}
}
c(func_name, p_list)
}
# check if the function works with has_cache
fmls <- get_formals(foo_cached(x = 1:10))
do.call(has_cache(eval(parse(text = fmls[1]))),
fmls[2])
#> [1] TRUE
# implement a small wrapper around has_cache that reports if its using cache
cache_wrapper <- function(f_call) {
fmls <- eval(as.call(list(get_formals, call = match.call()$f_call)))
is_cached <- do.call(has_cache(eval(parse(text = fmls[1]))),
fmls[2])
if (is_cached) print("Using Cache") else print("New Evaluation of f_call")
f_call
}
cache_wrapper(foo_cached(x = 1:10))
#> [1] "Using Cache"
#> [1] 5.5
cache_wrapper(foo_cached(x = 1:30))
#> [1] "New Evaluation of f_call"
#> [1] 5.5