获取函数内部函数调用的函数组件

时间:2020-08-13 15:06:23

标签: r metaprogramming

是否可以检索函数调用的函数组件?也就是说,是否可以在另一个函数调用上使用as.list(match.call())

背景是,我想拥有一个接受函数调用并返回所述函数调用组件的函数。

get_formals <- function(x) {
  # something here, which would behave as if x would be a function that returns
  # as.list(match.call())
}

get_formals(mean(1:10))
# expected to get:
# [[1]]
# mean
#
# $x
# 1:10

在提供的函数调用中调用get_formals时,预期结果是match.call()返回。

mean2 <- function(...) {
  as.list(match.call())
}
mean2(x = 1:10)
# [[1]]
# mean2
# 
# $x
# 1:10

另一个例子

此问题背后的动机是检查memoise d函数是否已包含缓​​存的值。 memoise具有功能has_cache(),但需要以特定的方式has_cache(foo)(vals)调用,例如,

library(memoise)

foo <- function(x) mean(x)
foo_cached <- memoise(foo)

foo_cached(1:10) # not yet cached
foo_cached(1:10) # cached

has_cache(foo_cached)(1:10) # TRUE
has_cache(foo_cached)(1:3) # FALSE

我的目标是在函数调用是否已缓存的情况下记录一些内容。

cache_wrapper <- function(f_call) {
  is_cached <- has_cache()() # INSERT SOLUTION HERE
  # I need to deconstruct the function call to pass it to has_cache
  # basically
  # has_cache(substitute(expr)[[1L]])(substitute(expr)[[2L]]) 
  # but names etc do not get passed correctly

  if (is_cached) print("Using Cache") else print("New Evaluation of f_call")
  f_call
}

cache_wrapper(foo_cached(1:10))
#> [1] "Using Cache"     # From the log-functionality
#> 5.5                   # The result from the function-call

3 个答案:

答案 0 :(得分:6)

您可以使用match.call()进行参数匹配。

get_formals <- function(expr) {
  call <- substitute(expr)
  call_matched <- match.call(eval(call[[1L]]), call)
  as.list(call_matched)
}

get_formals(mean(1:10))

# [[1]]
# mean
# 
# $x
# 1:10

library(ggplot2)
get_formals(ggplot(mtcars, aes(x = mpg, y = hp)))

# [[1]]
# ggplot
# 
# $data
# mtcars
# 
# $mapping
# aes(x = mpg, y = hp)

library(dplyr)
get_formals(iris %>% select(Species))

# [[1]]
# `%>%`
# 
# $lhs
# iris
# 
# $rhs
# select(Species)

编辑: 感谢@KonradRudolph的建议!

上面的函数找到 right 函数。它将在get_formals()的父级范围内搜索,而不在调用者的范围内搜索。更安全的方法是:

get_formals <- function(expr) {
  call <- substitute(expr)
  call_matched <- match.call(eval.parent(bquote(match.fun(.(call[[1L]])))), call)
  as.list(call_matched)
}

match.fun()对于正确解析被同名非功能对象遮盖的功能很重要。例如,如果mean被矢量覆盖

mean <- 1:5

get_formals()的第一个示例将出错,而更新后的版本运行良好。

答案 1 :(得分:3)

如果您不提供所有参数,这是一种从函数中获取默认值的方法:

get_formals <- function(call)
{
  f_list <- as.list(match.call()$call)
  func_name <- f_list[[1]]
  p_list <- formals(eval(func_name))
  f_list <- f_list[-1]
  ss <- na.omit(match(names(p_list), names(f_list)))
  if(length(ss) > 0) {
    p_list[na.omit(match(names(f_list), names(p_list)))] <- f_list[ss]
    f_list <- f_list[-ss]
  }
  unnamed <- which(!nzchar(sapply(p_list, as.character)))
  if(length(unnamed) > 0)
  {
    i <- 1
    while(length(f_list) > 0)
    {
      p_list[[unnamed[i]]] <- f_list[[1]]
      f_list <- f_list[-1]
      i <- i + 1
    }
  }
  c(func_name, p_list)
}

哪个给:

get_formals(rnorm(1))
[[1]]
rnorm

$n
[1] 1

$mean
[1] 0

$sd
[1] 1
get_formals(ggplot2::ggplot())
[[1]]
ggplot2::ggplot

$data
NULL

$mapping
aes()

$...


$environment
parent.frame()

要使其在一个级别上起作用,您可以执行以下操作:

foo <- function(f_call) {
  eval(as.call(list(get_formals, call = match.call()$f_call)))
}

foo(mean(1:10))
[[1]]
mean

$x
1:10

$...

答案 2 :(得分:2)

此答案主要基于Allens answer,但实现了有关evaleval.parent函数的Konrads注释。 此外,上面的示例还抛出了一些do.call以完成cache_wrapper

library(memoise)

foo <- function(x) mean(x)
foo_cached <- memoise(foo)

foo_cached(1:10) # not yet cached
#> [1] 5.5
foo_cached(1:10) # cached
#> [1] 5.5

has_cache(foo_cached)(1:10)
#> [1] TRUE
has_cache(foo_cached)(1:3)
#> [1] FALSE

# As answered by Allen with Konrads comment
get_formals <- function(call) {
  f_list <- as.list(match.call()$call)
  func_name <- f_list[[1]]
  # changed eval to eval.parent as suggested by Konrad...
  p_list <- formals(eval.parent(eval.parent(bquote(match.fun(.(func_name))))))
  f_list <- f_list[-1]
  ss <- na.omit(match(names(p_list), names(f_list)))
  if(length(ss) > 0) {
    p_list[na.omit(match(names(f_list), names(p_list)))] <- f_list[ss]
    f_list <- f_list[-ss]
  }
  unnamed <- which(!nzchar(sapply(p_list, as.character)))
  if(length(unnamed) > 0) {
    i <- 1
    while(length(f_list) > 0) {
      p_list[[unnamed[i]]] <- f_list[[1]]
      f_list <- f_list[-1]
      i <- i + 1
    }
  }
  c(func_name, p_list)
}

# check if the function works with has_cache
fmls <- get_formals(foo_cached(x = 1:10))
do.call(has_cache(eval(parse(text = fmls[1]))),
        fmls[2])
#> [1] TRUE


# implement a small wrapper around has_cache that reports if its using cache
cache_wrapper <- function(f_call) {
  fmls <- eval(as.call(list(get_formals, call = match.call()$f_call)))
  is_cached <- do.call(has_cache(eval(parse(text = fmls[1]))),
                       fmls[2])
  if (is_cached) print("Using Cache") else print("New Evaluation of f_call")
  f_call
}

cache_wrapper(foo_cached(x = 1:10))
#> [1] "Using Cache"
#> [1] 5.5

cache_wrapper(foo_cached(x = 1:30))
#> [1] "New Evaluation of f_call"
#> [1] 5.5