tensorflow错误:ValueError:图层序列的输入0与图层预期轴-1不兼容

时间:2020-08-12 02:14:22

标签: python-3.x tensorflow keras jupyter-notebook

我正在尝试修改提供给我的代码以导入图像文件,并使用keras构建训练和测试集。 我收到以下错误:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-154-b4983c6bd066> in <module>()
      1 # Fit the model
----> 2 history = model.fit(X_train, y_train, batch_size = 256, epochs = 15, verbose=2, validation_data=(X_test,y_test))

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py in _method_wrapper(self, *args, **kwargs)
    106   def _method_wrapper(self, *args, **kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self, *args, **kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
    778       else:
    779         compiler = "nonXla"
--> 780         result = self._call(*args, **kwds)
    781 
    782       new_tracing_count = self._get_tracing_count()

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
    821       # This is the first call of __call__, so we have to initialize.
    822       initializers = []
--> 823       self._initialize(args, kwds, add_initializers_to=initializers)
    824     finally:
    825       # At this point we know that the initialization is complete (or less

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in _initialize(self, args, kwds, add_initializers_to)
    695     self._concrete_stateful_fn = (
    696         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 697             *args, **kwds))
    698 
    699     def invalid_creator_scope(*unused_args, **unused_kwds):

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2853       args, kwargs = None, None
   2854     with self._lock:
-> 2855       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2856     return graph_function
   2857 

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\function.py in _maybe_define_function(self, args, kwargs)
   3211 
   3212       self._function_cache.missed.add(call_context_key)
-> 3213       graph_function = self._create_graph_function(args, kwargs)
   3214       self._function_cache.primary[cache_key] = graph_function
   3215       return graph_function, args, kwargs

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3073             arg_names=arg_names,
   3074             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3075             capture_by_value=self._capture_by_value),
   3076         self._function_attributes,
   3077         function_spec=self.function_spec,

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\framework\func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    984         _, original_func = tf_decorator.unwrap(python_func)
    985 
--> 986       func_outputs = python_func(*func_args, **func_kwargs)
    987 
    988       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\eager\def_function.py in wrapped_fn(*args, **kwds)
    598         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    599         # the function a weak reference to itself to avoid a reference cycle.
--> 600         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    601     weak_wrapped_fn = weakref.ref(wrapped_fn)
    602 

~\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\framework\func_graph.py in wrapper(*args, **kwargs)
    971           except Exception as e:  # pylint:disable=broad-except
    972             if hasattr(e, "ag_error_metadata"):
--> 973               raise e.ag_error_metadata.to_exception(e)
    974             else:
    975               raise

ValueError: in user code:

    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:806 train_function  *
        return step_function(self, iterator)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:796 step_function  **
        outputs = model.distribute_strategy.run(run_step, args=(data,))
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\distribute\distribute_lib.py:1211 run
        return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\distribute\distribute_lib.py:2585 call_for_each_replica
        return self._call_for_each_replica(fn, args, kwargs)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\distribute\distribute_lib.py:2945 _call_for_each_replica
        return fn(*args, **kwargs)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:789 run_step  **
        outputs = model.train_step(data)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\training.py:747 train_step
        y_pred = self(x, training=True)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\base_layer.py:976 __call__
        self.name)
    C:\Users\synar\AppData\Roaming\Python\Python37\site-packages\tensorflow\python\keras\engine\input_spec.py:216 assert_input_compatibility
        ' but received input with shape ' + str(shape))

    ValueError: Input 0 of layer sequential_41 is incompatible with the layer: expected axis -1 of input shape to have value 784 but received input with shape [None, 1]

我已经实现的代码是:

%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split

from sklearn import preprocessing
from sklearn import model_selection
from scipy.io import loadmat

data = loadmat('notMNIST_small.mat')
X_temp = data['images']/255

#for i in range(X_temp.shape[2]):
    
X = np.empty(shape=[X_temp.shape[2]] + [784], dtype='float32')
for i in range(X_temp.shape[2]):
    X[i,:] = X_temp[:,:,i].flatten()

y = pd.get_dummies(data['labels']).to_numpy()

print(X_temp.shape)
print(X.shape)
print(y.shape)
X[1,:]

X = np.array(data['labels']).reshape(-1, 1)
y = np.array(data['labels'])

X_train, X_test, y_train, y_test =train_test_split(
    X, y, test_size=0.2, random_state=9)

stdscaler = preprocessing.StandardScaler().fit(X_train)
X_train_scaled = stdscaler.transform(X_train)
X_test_scaled  = stdscaler.transform(X_test)

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.regularizers import l2, l1
from tensorflow.keras.optimizers import SGD

# Stochastic Logistic Regression
model = Sequential()

# Model
model.add(Dense(units=10, input_shape = [784,], activation = 'relu', kernel_regularizer=l2(0)))
model.add(Dense(units = 40, activation = 'relu'))
model.add(Dense(units = 10, activation = 'sigmoid'))
# Compile model
sgd = SGD(lr=0.1)
model.compile(loss='categorical_crossentropy', optimizer=sgd)

实现以下单元格时出现错误:

# Fit the model
history = model.fit(X_train, y_train, batch_size = 256, epochs = 15, verbose=2, validation_data=(X_test,y_test))

解决这个问题的任何帮助都是很棒的,我是机器学习的新手,请原谅我的无知。

1 个答案:

答案 0 :(得分:0)

为您的 X_train 添加额外的维度

x_train = x_train.reshape(-1, 28*28)

model = Sequential()

# Model
model.add(Dense(units=10, input_dim = 784, activation = 'relu', kernel_regularizer=l2(0)))
model.add(Dense(units = 40, activation = 'relu'))
model.add(Dense(units = 10, activation = 'sigmoid'))
# Compile model
sgd = SGD(lr=0.1)
model.compile(loss='categorical_crossentropy', optimizer=sgd)