如何在下面的数据框中每1分钟丢失一次时间戳?
Latitudes
Timestamps
2015-12-04 12:14:44.327000-05:00 41.805440
2015-12-04 12:14:44.631000-05:00 41.805440
2015-12-04 12:20:31.180000-05:00 41.804460
2015-12-04 12:20:31.375000-05:00 41.804460
2015-12-04 12:21:16.009000-05:00 41.804933
...
2015-12-18 08:42:05.020000-05:00 41.805483
2015-12-18 08:52:13.703000-05:00 41.805480
2015-12-18 09:13:08.378000-05:00 41.805616
2015-12-18 09:32:49.127000-05:00 41.805329
2015-12-18 09:43:07.421000-05:00 41.805449
我在做
df.set_index('Timestamps', inplace =True)
df.reindex(pd.date_range(start=df.index[0], end=df.index[-1], freq='1Min'))
但是它不起作用,为什么?
所需的输出-
Timestamps latitude
0 2015-12-04 12:14:44.327000-05:00 41.80544
1 2015-12-04 12:15:44.327000-05:00 NaN
2 2015-12-04 12:16:44.327000-05:00 NaN
3 2015-12-04 12:17:44.327000-05:00 NaN
4 2015-12-04 12:18:44.327000-05:00 NaN
..................................................
5 2015-12-04 12:20:31.180000-05:00 41.804460
6 2015-12-04 12:21:16.009000-05:00 41.804933
Blockquote 我还希望在数据帧中缺少时间戳值的纬度NAN值中填写-1。
答案 0 :(得分:0)
我修复了它。
df = df.set_index('Timestamps').asfreq('1Min')
输出:
Timestamps latitude
0 2015-12-04 12:14:44.327000-05:00 41.80544
1 2015-12-04 12:15:44.327000-05:00 NaN
2 2015-12-04 12:16:44.327000-05:00 NaN
3 2015-12-04 12:17:44.327000-05:00 NaN
4 2015-12-04 12:18:44.327000-05:00 NaN
... ...
20004 2015-12-18 09:38:44.327000-05:00 NaN
20005 2015-12-18 09:39:44.327000-05:00 NaN
20006 2015-12-18 09:40:44.327000-05:00 NaN
20007 2015-12-18 09:41:44.327000-05:00 NaN
20008 2015-12-18 09:42:44.327000-05:00 NaN