我在Vue中非常陌生,我正在尝试遍历数组。不完全知道我在做什么错,但列表未显示在HTML上。这是下面的代码:这是一个通过路由器视图呈现的索引文件。
<template>
<div class="index container">
<div class="card" v-for="tournament in tournaments" :key="tournament.id">
<div class="card-content">
<h2 class="indigo-text">{{tournament.title}}</h2>
<ul class="tournaments">
<li v-for="(score,index) in tournamnet.scores" :key="index"></li>
<span class="chip">{{score}}</span>
</ul>
</div>
</div>
</div>
</template>
<script>
export default {
name: 'index',
data () {
return {
tournaments:[
{title:'Muthaiga golf Tournament',slug: 'muthaiga-golf-tournament',scores:['Round 1', 'Round 2', 'Round 3'],id:'1'},
{title:'Wilson Churchhill',slug: 'Wilson Churchhill',scores:['Round 1', 'Round 2', 'Round 3'],id:'2'},
]
}
},
}
</script>
<!-- Add "scoped" attribute to limit CSS to this component only -->
<style>
</style>
这是路由器视图index.js
import Vue from 'vue'
import Router from 'vue-router'
import index from '@/components/index'
Vue.use(Router)
export default new Router({
routes: [
{
path: '/',
name: 'index',
component: index
}
]
})
这是app.vue
<template>
<div id="app">
<navbar />
<router-view/>
</div>
</template>
<script>
import navbar from '@/components/navbar'
export default {
name: 'App',
components:{
navbar
}
}
</script>
我们将不胜感激任何帮助。
答案 0 :(得分:3)
将跨度放在v-for
<ul class="tournaments">
<li v-for="(score,index) in tournament.scores" :key="index+'tournament'">
<span class="chip">{{score}}</span>
</li>
</ul>
此外,最好不要将索引用作键,我添加了字符串'tournament'
以使其更具唯一性。
此外,请确保您已纠正“比赛”的拼写。
答案 1 :(得分:1)
您在import tensorflow as tf
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.astype('float32')/255.
x_test = x_test.astype('float32')/255.
inter_dim = 64 # units in each dense layer
latent_dim = 2 # latent space dimensionality
# build encoder: image -> (mean, sigma) in latent space
input = tf.keras.Input(shape=(28,28,),name="encoder_input")
x = tf.keras.layers.Flatten()(input)
x = tf.keras.layers.Dense(inter_dim, activation="relu")(x)
z_mean = tf.keras.layers.Dense(latent_dim, name="z_mean")(x)
z_log_sigma = tf.keras.layers.Dense(latent_dim, name="z_log_sigma")(x) # log(sigma) of latent dist
encoder = tf.keras.Model(inputs=input, outputs=(z_mean,z_log_sigma),name="encoder")
# create sampling layer using a keras Lambda
def sampling(args):
z1, z2 = args
return z1 + tf.exp(0.5*z2) * tf.random.normal(shape=tf.shape(z1))
sampler = tf.keras.layers.Lambda(sampling)
# # construct a decoder
d_input = tf.keras.Input(shape=(latent_dim,),name="decoder_input") # dont need if connect straight to sample
y = tf.keras.layers.Dense(inter_dim, activation="relu")(d_input)
y = tf.keras.layers.Dense(784, activation="sigmoid")(y)
output = tf.keras.layers.Reshape(target_shape=(28,28,))(y) # unflatten
decoder = tf.keras.Model(inputs=d_input, outputs=output,name="decoder")
# build the full vae model
vae_input = tf.keras.Input(shape=(28,28,),name="vae_input")
vae_output = decoder( sampler( encoder(vae_input) ) )
m = tf.keras.Model(inputs=vae_input,outputs=vae_output)
#tf.keras.utils.plot_model(m, show_shapes=True, expand_nested=True)
def vae_loss(y_true, y_pred):
xent_loss = tf.keras.losses.BinaryCrossentropy()(y_true,y_pred)
kl_loss = -0.5 * tf.reduce_mean( 1 + z_log_sigma - tf.square(z_mean) - tf.exp(z_log_sigma), axis=-1 )
return xent_loss + kl_loss
m.compile(optimizer='adam',loss=vae_loss)
m.fit(x_train, x_train, epochs=1)
上有错字
比赛错了
如果您在控制台中查看,应该会看到
<li v-for="(score,index) in tournamnet.scores" :key="index"></li>