我有一个分类模型,该模型明显过拟合,并且验证准确性没有变化。 我尝试过使用特征选择和特征提取方法,但是它们没有帮助。
特征选择方法:
fs = SelectKBest(f_classif, k=10)
fs.fit(x, y)
feature_index = fs.get_support(True)
feature_index = feature_index.tolist()
best_features = []
# makes list of best features
for index in feature_index:
best_features.append(x[:, index])
x = (np.array(best_features, dtype=np.float)).T
型号:
def model_and_print(x, y, Epochs, Batch_Size, loss, opt, class_weight, callback):
# fix random seed for reproducibility
seed = 7
np.random.seed(seed)
# define 10-fold cross validation test harness
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
# K-fold Cross Validation model evaluation
fold_no = 1
for train, test in kfold.split(x, y):
# create model
model = Sequential()
model.add(Dropout(0.2, input_shape=(len(x[0]),)))
model.add(Dense(6, activation='relu', kernel_constraint=maxnorm(3)))
model.add(Dropout(0.2))
model.add(Dense(8, activation='relu', kernel_constraint=maxnorm(3)))
model.add(Dropout(0.4))
model.add(Dense(1, activation=tf.nn.sigmoid))
# compile model
model.compile(optimizer=opt,
loss=loss, metrics=['accuracy']
)
history = model.fit(x[train], y[train], validation_data=(x[test], y[test]), epochs=Epochs,
batch_size=Batch_Size, verbose=1)
def main():
data = ["data.pkl", "data_list.pkl", "data_mean.pkl"]
df = pd.read_pickle(data[2])
x, y = data_frame_to_feature_and_target_arrays(df)
# hyper meters
Epochs = 200
Batch_Size = 1
learning_rate = 0.003
optimizer = optimizers.Adam(learning_rate=learning_rate)
loss = "binary_crossentropy"
model_and_print(x, y, Epochs, Batch_Size, loss, optimizer, class_weight, es_callback)
if __name__ == "__main__":
main()
输出的一部分:
1/73 [..............................] - ETA: 0s - loss: 0.6470 - accuracy: 1.0000
62/73 [========================>.....] - ETA: 0s - loss: 0.5665 - accuracy: 0.7097
73/73 [==============================] - 0s 883us/step - loss: 0.5404 - accuracy: 0.7534 - val_loss: 0.5576 - val_accuracy: 0.5000
Epoch 100/200
1/73 [..............................] - ETA: 0s - loss: 0.4743 - accuracy: 1.0000
69/73 [===========================>..] - ETA: 0s - loss: 0.6388 - accuracy: 0.6522
73/73 [==============================] - 0s 806us/step - loss: 0.6316 - accuracy: 0.6575 - val_loss: 0.5592 - val_accuracy: 0.5000
Epoch 101/200
1/73 [..............................] - ETA: 0s - loss: 0.6005 - accuracy: 1.0000
69/73 [===========================>..] - ETA: 0s - loss: 0.5656 - accuracy: 0.7101
73/73 [==============================] - 0s 806us/step - loss: 0.5641 - accuracy: 0.7123 - val_loss: 0.5629 - val_accuracy: 0.5000
Epoch 102/200
1/73 [..............................] - ETA: 0s - loss: 0.2126 - accuracy: 1.0000
65/73 [=========================>....] - ETA: 0s - loss: 0.5042 - accuracy: 0.8000
73/73 [==============================] - 0s 847us/step - loss: 0.5340 - accuracy: 0.7671 - val_loss: 0.5608 - val_accuracy: 0.5000
Epoch 103/200
1/73 [..............................] - ETA: 0s - loss: 0.8801 - accuracy: 0.0000e+00
68/73 [==========================>...] - ETA: 0s - loss: 0.5754 - accuracy: 0.6471
73/73 [==============================] - 0s 819us/step - loss: 0.5780 - accuracy: 0.6575 - val_loss: 0.5639 - val_accuracy: 0.5000
Epoch 104/200
1/73 [..............................] - ETA: 0s - loss: 0.0484 - accuracy: 1.0000
70/73 [===========================>..] - ETA: 0s - loss: 0.5711 - accuracy: 0.7571
73/73 [==============================] - 0s 806us/step - loss: 0.5689 - accuracy: 0.7534 - val_loss: 0.5608 - val_accuracy: 0.5000
Epoch 105/200
1/73 [..............................] - ETA: 0s - loss: 0.1237 - accuracy: 1.0000
69/73 [===========================>..] - ETA: 0s - loss: 0.5953 - accuracy: 0.7101
73/73 [==============================] - 0s 820us/step - loss: 0.5922 - accuracy: 0.7260 - val_loss: 0.5672 - val_accuracy: 0.5000
Epoch 106/200
1/73 [..............................] - ETA: 0s - loss: 0.3360 - accuracy: 1.0000
67/73 [==========================>...] - ETA: 0s - loss: 0.5175 - accuracy: 0.7313
73/73 [==============================] - 0s 847us/step - loss: 0.5320 - accuracy: 0.7397 - val_loss: 0.5567 - val_accuracy: 0.5000
Epoch 107/200
1/73 [..............................] - ETA: 0s - loss: 0.1384 - accuracy: 1.0000
67/73 [==========================>...] - ETA: 0s - loss: 0.5435 - accuracy: 0.6866
73/73 [==============================] - 0s 833us/step - loss: 0.5541 - accuracy: 0.6575 - val_loss: 0.5629 - val_accuracy: 0.5000
Epoch 108/200
1/73 [..............................] - ETA: 0s - loss: 0.2647 - accuracy: 1.0000
69/73 [===========================>..] - ETA: 0s - loss: 0.6047 - accuracy: 0.6232
73/73 [==============================] - 0s 820us/step - loss: 0.5948 - accuracy: 0.6301 - val_loss: 0.5660 - val_accuracy: 0.5000
Epoch 109/200
1/73 [..............................] - ETA: 0s - loss: 0.8837 - accuracy: 0.0000e+00
66/73 [==========================>...] - ETA: 0s - loss: 0.5250 - accuracy: 0.7576
73/73 [==============================] - 0s 861us/step - loss: 0.5357 - accuracy: 0.7397 - val_loss: 0.5583 - val_accuracy: 0.5000
Epoch 110/200
最终精度:
Score for fold 10: loss of 0.5600861310958862; accuracy of 50.0%
我的问题是,如果我尝试过特征提取和缺失层,该如何处理过度拟合?为什么验证精度没有改变?