我有一个数据框:
Item SW_test HW_test QA_test
0 PC Pass Pass Pass
1 Laptop Fail Fail Pass
2 Mouse Pass Pass Fail
我想创建一个最后一列,如果所有测试均通过(不区分大小写),则将显示Pass
,如果一个或多个测试失败,则显示Fail
。
Item SW_test HW_test QA_test Final
0 PC Pass Pass Pass Pass
1 Laptop Fail Fail Pass Fail
2 Mouse Pass Pass Fail Fail
如何在熊猫中创建df['Final']
?
答案 0 :(得分:6)
将eq
与all
一起使用:
df['Final'] = df.iloc[:,1:].eq('Pass').all(1)
#If case sensitive you can use
df['Final'] = df.iloc[:,1:].isin(['Pass','pass']).all(1)
#or
df['Final'] = df.iloc[:,1:].apply(lambda x: x.str.lower().eq('pass')).all(1)
#or
df['Final'] = df.iloc[:,1:].applymap(str.lower).eq('pass').all(1)
您也可以使用np.where
:
df['Final'] = np.where(df['Final'], 'Pass', 'Fail')
答案 1 :(得分:3)
cols = ['SW_test', 'HW_test', 'QA_test']
df['Final'] = df[cols].eq('Pass').all(1)
Item SW_test HW_test QA_test Final
0 PC Pass Pass Pass Pass
1 Laptop Fail Fail Pass Fail
2 Mouse Pass Pass Fail Fail
答案 2 :(得分:1)
您可以应用lambda函数检查条件的位置,然后可以使用所需的值替换true / false值。 例如:
#create a dataframe
df = pd.DataFrame({'a':['Pass','Pass'], 'b':['Pass','Fail']})
a b
0 Pass Pass
1 Pass Fail
在条件成立的地方创建一个新列
df['c'] = df.apply(lambda row: row.a=='Pass' and row.b=='Pass', axis=1)
a b c
0 Pass Pass True
1 Pass Fail False
将true / false值替换为要显示的内容
df['c'] = df['c'].map({ True: 'Pass', False: 'Fail'})
a b c
0 Pass Pass Pass
1 Pass Fail Fail
答案 3 :(得分:0)
# set column to "Pass" initially
df["Final"] = "Pass"
# set "Fail" rows
df.loc[(
(df.loc[:, ["SW_test", "HW_test", "QA_test"]] == "Fail") |
(df.loc[:, ["SW_test", "HW_test", "QA_test"]] == "fail")
).any(axis = 1), "Final"] = "Fail"