我有一个如下所示的示例数据框:
well <- c('A1','A2','A3','A4','A5')
area <- c(21000, 23400, 26800,70000,8000)
length <- c(21, 234, 26,70,22)
group<-c('WT','Control','C2','D2','E1')
data <- data.frame(well,area,length,group)
我想应用以下函数从数据框中删除带有异常值的行:
Outlier <- function(x){
low <- median(x, na.rm=TRUE)-5*(mad(x))
high <- median(x, na.rm=TRUE)+5*(mad(x))
out <- if_else(x > high, NA,ifelse(x < low, low, x))
out }
如何将此功能应用于除某些列(例如“ well”和“ group”列)以外的数据框?
答案 0 :(得分:2)
我们可以在lapply
中使用base R
data[c('area', 'length')] <- lapply(data[c('area', 'length')], Outlier)
或与dplyr
library(dplyr) # 1.0.0
data %>%
mutate(across(area:length, Outlier))
# well area length group
#1 A1 21000 21 WT
#2 A2 23400 NA Control
#3 A3 26800 26 C2
#4 A4 NA NA D2
#5 A5 8000 22 E1
注意:请确保在“异常值”功能中将NA
更改为NA_real_
Outlier <- function(x){
low <- median(x, na.rm=TRUE)-5*(mad(x))
high <- median(x, na.rm=TRUE)+5*(mad(x))
out <- if_else(x > high, NA_real_,ifelse(x < low, low, x))
out }