我有一个数据框df
,其中有6000余行数据,其日期时间索引格式为YYYY-MM-DD
,列ID
,water_level
和change
我要:
change
列中的每个值并确定转折点turningpoints_df
turningpoints_df
中,以便得到这样的结果: ID water_level change
date
2000-10-01 2 5.5 -0.01
2000-12-13 40 10.0 0.02
2001-02-10 150 1.1 -0.005
2001-07-29 201 12.4 0.01
... ... ... ...
我当时正在考虑采用定位方法,例如(纯粹是说明性的):
turningpoints_df = pd.DataFrame(columns = ['ID', 'water_level', 'change'])
for i in range(len(df['change'])):
if [i-1] < 0 and [i+1] > 0:
#this is a min point and take this row and copy to turningpoints_df
elif [i-1] > 0 and [i+1] < 0:
#this is a max point and take this row and copy to turningpoints_df
else:
pass
我的问题是,我不确定如何将change
列中的每个值与之前和之后的值进行比较,然后再在条件满足时如何将数据行提取到新的df中被满足。
答案 0 :(得分:0)
听起来您想使用DataFrame的shift
方法。
# shift values down by 1:
df[change_down] = df[change].shift(1)
# shift values up by 1:
df[change_up] = df[change].shift(-1)
然后您应该能够比较每一行的值,并继续进行您要达到的目标。
for row in df.iterrows():
*check conditions here*
答案 1 :(得分:0)
使用一些NumPy功能,使您可以roll()
向前或向后进行一系列操作。然后将 prev 和 next 放在同一行上,这样就可以使用一个简单的函数来apply()
,因为一切都在同一行上。
from decimal import *
import numpy as np
d = list(pd.date_range(dt.datetime(2000,1,1), dt.datetime(2010,12,31)))
df = pd.DataFrame({"date":d, "ID":[random.randint(1,200) for x in d],
"water_level":[round(Decimal(random.uniform(1,13)),2) for x in d],
"change":[round(Decimal(random.uniform(-0.05, 0.05)),3) for x in d]})
# have ref to prev and next, just apply logic
def turningpoint(r):
r["turningpoint"] = (r["prev_change"] < 0 and r["next_change"] > 0) or \
(r["prev_change"] > 0 and r["next_change"] < 0)
return r
# use numpy to shift "change" so have prev and next on same row as new columns
# initially default turningpoint boolean
df = df.assign(prev_change=np.roll(df["change"],1),
next_change=np.roll(df["change"],-1),
turningpoint=False).apply(turningpoint, axis=1).drop(["prev_change", "next_change"], axis=1)
# first and last rows cannot be turning points
df.loc[0:0,"turningpoint"] = False
df.loc[df.index[-1], "turningpoint"] = False
# take a copy of all rows that are turningpoints into new df with index
df_turningpoint = df[df["turningpoint"]].copy()
df_turningpoint