我试图过滤一个淡淡的数据帧,使其仅包含由字典定义的特定时间段,其中键是ISO区域,值是时间戳列表。
这是一个经过修改的字典作为示例。
iso_region_dict = {'MISO-E':[Timestamp('2016-05-17 22:15:00'),Timestamp('2016-10-21 13:45:00'),Timestamp('2016-12-26 02:45:00')], 'CAISO':[Timestamp('2016-08-24 10:15:00'),Timestamp('2016-07-03 14:30:00'),Timestamp('2016-04-22 12:45:00')]}
我的dask数据帧看起来像这样(timeseries_ddf):
building_id time electricity_cooling_kwh electricity_heating_kwh total_site_electricity_kwh iso_zone
0 2 2016-01-01 00:15:00 0.0 0.0 4.082225 MISO-E
1 2 2016-05-17 22:15:00 0.0 0.0 5.627103 MISO-E
2 2 2016-10-21 13:45:00 0.0 0.0 21.547435 MISO-E
3 2 2016-12-26 02:45:00 0.0 0.0 4.082225 MISO-E
4 2 2016-10-21 14:00:00 0.0 0.0 21.547435 MISO-E
完整的数据帧具有数千个建筑物ID,并且“时间”列的日期时间格式为2016-1-1至2016-12-31,每个building_id的间隔为15分钟。我想过滤此数据框,使其仅在针对每个building_id的iso_region_dict中定义的time列中包括时间戳。这是一个非常大的数据框,这就是为什么我要使用dask。
所需的输出(timeseries_discharge_ddf):
building_id time electricity_cooling_kwh electricity_heating_kwh total_site_electricity_kwh iso_zone
0 2 2016-05-17 22:15:00 0.0 0.0 5.627103 MISO-E
1 2 2016-10-21 13:45:00 0.0 0.0 21.547435 MISO-E
2 2 2016-12-26 02:45:00 0.0 0.0 4.082225 MISO-E
我已经做了一系列类似的事情,只是列出了一个时间戳记:
timeseries_discharge_ddf = timeseries_ddf.map_partitions(lambda x: x[x.time.isin(discharge_timestamps)])
我现在要尝试实现的另一个步骤是此过滤器,但是discharge_timestamps列表会根据iso_zone是什么而变化。
答案 0 :(得分:0)
我认为在这里使用合并或联接会更容易。
import pandas as pd
import dask.dataframe as dd
diz_df = {'building_id': {0: 2, 1: 2, 2: 2, 3: 2, 4: 2},
'time': {0: '2016-01-01 00:15:00',
1: '2016-05-17 22:15:00',
2: '2016-10-21 13:45:00',
3: '2016-12-26 02:45:00',
4: '2016-10-21 14:00:00'},
'electricity_cooling_kwh': {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
'electricity_heating_kwh': {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0},
'total_site_electricity_kwh': {0: 4.082225,
1: 5.627103,
2: 21.547435,
3: 4.082225,
4: 21.547435},
'iso_zone': {0: 'MISO-E', 1: 'MISO-E', 2: 'MISO-E', 3: 'MISO-E', 4: 'MISO-E'}}
diz_filter = {'iso_zone': {0: 'MISO-E',
1: 'MISO-E',
2: 'MISO-E',
3: 'CAISO',
4: 'CAISO',
5: 'CAISO'},
'time': {0: '2016-05-17 22:15:00',
1: '2016-10-21 13:45:00',
2: '2016-12-26 02:45:00',
3: '2016-08-24 10:15:00',
4: '2016-07-03 14:30:00',
5: '2016-04-22 12:45:00'}}
df = pd.DataFrame(diz_df)
df_filter = pd.DataFrame(diz_filter)
# converting to datetime
df["time"] = df["time"].astype("M8")
df_filter["time"] = df_filter["time"].astype("M8")
pandas
df_out = pd.merge(df, df_filter, on=["time", "iso_zone"])
dask
df = dd.from_pandas(df, npartitions=2)
# It doesn't matter if the second dataframe is pandas or dask
# df_filter = dd.from_pandas(df_filter, npartitions=2)
df_out = dd.merge(df, df_filter, on=["time", "iso_zone"])