我是lstm的新手,有一个看起来像这样的代码。
class TD3(object):
def __init__(
self,
state_dim,
action_dim,
max_action,
):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim,
max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = torch.optim.Adam(self.actor.parameters())
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = \
torch.optim.Adam(self.critic.parameters())
self.max_action = max_action
def select_action(self, state, hx1):
(hx, cx) = hx1
x = self.actor(state, hx1)
return x
def train(
self,
replay_buffer,
iterations,
batch_size=50,
discount=0.99,
tau=0.005,
policy_noise=0.2,
noise_clip=0.5,
policy_freq=2,
):
for it in range(iterations):
print ('it: ', it, ' iterations: ', iterations)
# Step 4: We sample a batch of transitions (s, s’, a, r) from the memory
(batch_states, batch_next_states, batch_actions,
batch_rewards, batch_dones) = \
replay_buffer.sample(batch_size)
batch_states = batch_states.astype(float)
batch_next_states = batch_next_states.astype(float)
batch_actions = batch_actions.astype(float)
batch_rewards = batch_rewards.astype(float)
batch_dones = batch_dones.astype(float)
state = torch.from_numpy(batch_states)
next_state = torch.from_numpy(batch_next_states)
action = torch.from_numpy(batch_actions)
reward = torch.from_numpy(batch_rewards)
done = torch.from_numpy(batch_dones)
b_size = 1
seq_len = state.shape[0]
batch = b_size
input_size = state_dim
# for h and c shape (num_layers * num_directions, batch, hidden_size)
h0 = torch.zeros(1, 1, 256)
c0 = torch.zeros(1, 1, 256)
state = torch.reshape(state, (seq_len, batch, state_dim))
next_state = torch.reshape(next_state, (seq_len, batch,
state_dim))
done = torch.reshape(done, (seq_len, batch, 1))
reward = torch.reshape(reward, (seq_len, batch, 1))
# Step 5: From the next state s’, the Actor target plays the next action a’
next_action = self.actor_target(next_state, (h0, c0))
next_action = next_action[0]
# Step 6: We add Gaussian noise to this next action a’ and we clamp it in a range of values supported by the environment
noise = torch.Tensor(next_action).data.normal_(0,
policy_noise).to(device)
noise = noise.clamp(-noise_clip, noise_clip)
next_action = (next_action + noise).clamp(-self.max_action,
self.max_action)
# Step 7: The two Critic targets take each the couple (s’, a’) as input and return two Q-values Qt1(s’,a’) and Qt2(s’,a’) as outputs
result = self.critic_target(next_state, next_action, (h0,
c0))
target_Q1 = result[0]
target_Q2 = result[1]
# Step 8: We keep the minimum of these two Q-values: min(Qt1, Qt2)
target_Q = torch.min(target_Q1, target_Q2).double()
# Step 9: We get the final target of the two Critic models, which is: Qt = r + γ * min(Qt1, Qt2), where γ is the discount factor
target_Q = reward + (1 - done) * discount * target_Q
# Step 10: The two Critic models take each the couple (s, a) as input and return two Q-values Q1(s,a) and Q2(s,a) as outputs
action = torch.reshape(action, next_action.shape)
result = self.critic(state, action, (h0, c0))
current_Q1 = result[0]
current_Q2 = result[1]
# Step 11: We compute the loss coming from the two Critic models: Critic Loss = MSE_Loss(Q1(s,a), Qt) + MSE_Loss(Q2(s,a), Qt)
critic_loss = F.mse_loss(current_Q1, target_Q) \
+ F.mse_loss(current_Q2, target_Q)
# Step 12: We backpropagate this Critic loss and update the parameters of the two Critic models with a SGD optimizer
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Step 13: Once every two iterations, we update our Actor model by performing gradient ascent on the output of the first Critic model
if it % policy_freq == 0:
out = self.actor(state, (h0, c0))
out = out[0]
(actor_loss, hx, cx) = self.critic.Q1(state, out, (h0,
c0))
actor_loss = -1 * actor_loss.mean()
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Step 14: Still once every two iterations, we update the weights of the Actor target by polyak averaging
for (param, target_param) in zip(self.actor.parameters(),
self.actor_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau)
* target_param.data)
# Step 15: Still once every two iterations, we update the weights of the Critic target by polyak averaging
for (param, target_param) in zip(self.critic.parameters(),
self.critic_target.parameters()):
target_param.data.copy_(tau * param.data + (1 - tau)
* target_param.data)
在训练函数中,我有一个for循环,用于训练不同的批次...但是我知道它也支持批次处理。
请让我知道从pytorch中代表每个批次的2个张量创建2个批次的批次张量的正确方法是什么。 例如。如何转换(1,1,256)的2个张量->(1,2,256)而不是(2,1,256)#的张量#使得输入张量的数据不重叠以获得输出张量。
谢谢。
答案 0 :(得分:0)
创建批处理张量的正确方法?
我认为您想知道初始化h0
和co
变量的正确方法吗?
如果我是对的,那么您可以这样做:
def init_hidden(self):
weight = next(self.parameters())
return (weight.new_zeros(self.num_layers, self.batch_size, self.hidden_size),
weight.new_zeros(self.num_layers, self.batch_size, self.hidden_size))
当然,您需要使用num_layers
方法初始化batch_size
,hidden_size
和__init__
。
h0, co = self.init_hidden()
如何转换2个张量?
您可以使用reshape
方法。
h_new = h0.reshape(1, 2, 256)