sklearn数据集中的特征选择问题

时间:2020-07-23 07:25:15

标签: python scikit-learn

我是一个初学者。我现在正在sklearn下编写一个特征选择算法,并且编写了一个简单的程序来进行尝试。目标是取出数据集中的某些列,但结果是错误。以下是代码和错误消息。请帮助我,谢谢。我该怎么办?

import numpy as np
from sklearn.datasets import load_iris
data = load_iris()
data=np.array(data)
print(data[:,[0,1]]) #Take the first two columns of the dataset and print

错误消息:

Traceback (most recent call last):
  File "K:/b/f_s_DF.py", line 6, in <module>
    print(data[:,[0,1]])#Take the first two columns of the dataset and print
IndexError: too many indices for array: array is 0-dimensional, but 2 were indexed

2 个答案:

答案 0 :(得分:1)

首先,您需要将虹膜类型<class 'sklearn.utils.Bunch'>更改为熊猫dataframe。然后numpy ndarray

import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
data1 = np.array(pd.DataFrame(data= np.c_[iris['data'], iris['target']],
                     columns= iris['feature_names'] + ['target']))
print(data1[:,:2])

从ndarray获取值时,无需像1,2这样的索引。您可以给:2

答案 1 :(得分:0)

您无需转换Numpy.ndarray,而是将这些数据转换为pandas Dataframe,并轻松地看到“拳头两”或任何一栏。请查看以下代码:


import pandas as pd
from sklearn.datasets import load_iris
data = load_iris()
datasets = pd.DataFrame(data['data'], columns = 
           data['feature_names'])
target_val = pd.Series(data['target'], name = 
            'target_values')
datasets['target'] = target_val
datasets[:2]

输出:


    sepal length      sepal width   petal length    petal width  target
0      5.1                3.5            1.4             0.2       0
1      4.9                3.0            1.4             0.2       0