我有一个包含Football数据的DataFrame,其中每一行代表一个比赛。 DataFrame包括以下几列:“日期”,“ HomeTeam”,“ AwayTeam”,“ Points_HomeTeam”,“ Points_AwayTeam”。
+--------------------------------------------------------------------------+
| 'Date' 'HomeTeam' 'AwayTeam' 'Points_HomeTeam' 'Points_AwayTeam' |
+--------------------------------------------------------------------------+
| 2000-08-19 Charlton Man City 0 3 |
| 2000-08-19 Chelsea Arsenal 1 1 |
| 2000-08-23 Coventry Man City 3 0 |
| 2000-08-25 Man City Liverpool 1 1 |
| 2000-08-28 Derby Man City 1 1 |
| 2000-08-31 Leeds Chelsea 3 0 |
| 2000-08-31 Man City Everton 3 0 |
+--------------------------------------------------------------------------+
我想添加一列,该列显示HomeTeam在其最近的两个客场比赛中的得分之和,即前两个行实例的“ Points_AwayTeam”列中的值之和。 “ AwayTeam”等于相应当前行的“ HomeTeam”。
例如,在下表中,“ HomeTeam”列中首次出现“ Man City”的新列将具有值“ 3”(前一个列的“ Points_AwayTeam”列中的值之和在“ AwayTeam”列中出现了两次“ Man City”,即0 + 3) 同样,在“ HomeTeam”列中第二次出现“ Man City”的新列将具有值“ 1”(1 + 0)。 其他行的值将为“ NA”,因为列“ AwayTeam”中没有其他“ HomeTeam”出现两次。
+-------------------------------------------------------------------------------------+
| 'Date' 'HomeTeam' 'AwayTeam' 'Points_HomeTeam' 'Points_AwayTeam' 'New Column' |
+-------------------------------------------------------------------------------------+
| 2000-08-19 Charlton Man City 0 3 NA |
| 2000-08-19 Chelsea Arsenal 1 1 NA |
| 2000-08-23 Coventry Man City 3 0 NA |
| 2000-08-25 Man City Liverpool 1 1 3 |
| 2000-08-28 Derby Man City 1 1 NA |
| 2000-08-31 Leeds Chelsea 3 0 NA |
| 2000-08-31 Man City Everton 3 0 1 |
+-------------------------------------------------------------------------------------+
我设法使用以下代码计算了“ HomeTeam”在最近两个主场比赛中的积分之和:
f = lambda x: x.rolling(window = rolling_games, min_periods = rolling_games).sum().shift()
df['HomeTeam_HomePoints'] = df.groupby('HomeTeam')['Points_HomeTeam'].apply(f).reset_index(drop = True, level = 0)
如何根据独立列中的值计算行的滚动总和?
非常感谢!
答案 0 :(得分:0)
这是一个解决方案:
away = df[["Date", "AwayTeam", "Points_AwayTeam"]].copy()
# Create a rolling sum for the away column.
away["roll_sum"] = away.groupby("AwayTeam")["Points_AwayTeam"].transform(lambda x: x.rolling(2).sum())
# for every match, we now have to find the last rolling sum
# of 'away' for the 'home' team.
#
# We're going to use merge_asof to do that:
# The first step of this function is to match home-teams on the left
# to away teams on the left. (done via left_by and right_by)
# then, for every date on the left, we're looking for the closest
# (previous) date on the right (this is done by the 'on' argument).
res=pd.merge_asof(df, away, on= "Date", left_by="HomeTeam", right_by="AwayTeam", suffixes=["", "_roll"])
res.drop(["AwayTeam_roll", "Points_AwayTeam_roll"], axis=1, inplace = True)
print(res)
输出:
Date HomeTeam AwayTeam Points_HomeTeam Points_AwayTeam roll_sum
0 2000-08-19 Charlton Man-City 0 3 NaN
1 2000-08-19 Chelsea Arsenal 1 1 NaN
2 2000-08-23 Coventry Man-City 3 0 NaN
3 2000-08-25 Man-City Liverpool 1 1 3.0
4 2000-08-28 Derby Man-City 1 1 NaN
5 2000-08-31 Leeds Chelsea 3 0 NaN
6 2000-08-31 Man-City Everton 3 0 1.0