是否存在用于pytorch的tensorflow.keras.layers.Timedistributed的等效实现?
我正在尝试构建类似 时间分配的(Resnet50())。
答案 0 :(得分:4)
在this topic上的miguelvr信用。
您可以使用此代码,该代码是为模仿Timeditributed包装器而开发的PyTorch模块。
import torch.nn as nn
class TimeDistributed(nn.Module):
def __init__(self, module, batch_first=False):
super(TimeDistributed, self).__init__()
self.module = module
self.batch_first = batch_first
def forward(self, x):
if len(x.size()) <= 2:
return self.module(x)
# Squash samples and timesteps into a single axis
x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size)
y = self.module(x_reshape)
# We have to reshape Y
if self.batch_first:
y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size)
else:
y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size)
return y