我有一个简单的keras模型,如下所示:
from keras.models import Sequential
from keras.layers import Dense, Activation,Dropout
from keras.utils import plot_model
import tensorflow as tf
model_textual= Sequential()
model_textual.add(Dense(units=300, input_shape=(300,),activation='relu'))
#model_textual.add(Dense(units=300, input_dim=300,activation='relu'))
model_textual.add(Dropout(0.5))
model_textual.add(Dense(units=150,activation='relu'))
model_textual.add(Dropout(0.5))
model_textual.add(Dense(19,activation='softmax'))
print(model_textual.summary())
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 300) 90300
_________________________________________________________________
dropout (Dropout) (None, 300) 0
_________________________________________________________________
dense_1 (Dense) (None, 150) 45150
_________________________________________________________________
dropout_1 (Dropout) (None, 150) 0
_________________________________________________________________
dense_2 (Dense) (None, 19) 2869
=================================================================
Total params: 138,319
Trainable params: 138,319
Non-trainable params: 0
_________________________________________________________________
None
我现在将上述模型绘制为:
from keras.utils.vis_utils import plot_model
plot_model(model_textual,'DNN_MLP_model.png',show_shapes=True,show_layer_names=True)
但是,我得到的None
代替了输出形状参数中的?
。我该如何纠正?