我正试图让我的tensorflow模型在2类图像上进行训练,但遇到了ValueError问题。有人可以帮忙吗? 这是相关的代码:
# Get image arrays and labels for all image files
images, labels = load_data(sys.argv[1])
# Split data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(
images, labels, test_size=TEST_SIZE
)
# Get a compiled neural network
model = get_model()
model.summary()
# Fit model on training data
model.fit_generator(x_train, steps_per_epoch=128, epochs=EPOCHS,
validation_data=y_train, validation_steps=128)
def load_data(data_dir):
image_generator = ImageDataGenerator(rescale=1. / 255)
resized_imgs = image_generator.flow_from_directory(batch_size=128, directory=data_dir,
shuffle=True, target_size=dimensions,
class_mode='binary')
images, labels = next(resized_imgs)
plotImages(images[:15])
return images, labels
def get_model():
# create a convolutional neural network
model = tf.keras.models.Sequential([
# convolutional layer. Learn 32 filters using
a 3x3 kernel
tf.keras.layers.Conv2D(
32, (3, 3), activation="relu", input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)
),
tf.keras.layers.BatchNormalization(),
# max-pooling layer, using 2x2 pool size
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
# convolutional layer. Learn 32 filters using a 3x3 kernel
tf.keras.layers.Conv2D(
32, (3, 3), activation="relu", input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)
),
tf.keras.layers.BatchNormalization(),
# max-pooling layer, using 2x2 pool size
tf.keras.layers.MaxPooling2D(pool_size=(2, 2)),
# flatten units
tf.keras.layers.Flatten(),
# add a hidden layer with dropout
tf.keras.layers.Dense(128, activation="relu"),
tf.keras.layers.Dropout(0.5),
# add an output layer with NUM_CATEGORIES (43) units
tf.keras.layers.Dense(NUM_CATEGORIES, activation="sigmoid") # changed activation from softmax
# to sigmoid whic is the proper activation for binary data
])
# train neural network
model.compile(
optimizer="adam",
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True), metrics=["accuracy"]
)
return model
我最终收到以下错误: ValueError:没有为任何变量提供渐变:['conv2d / kernel:0','conv2d / bias:0','batch_normalization / gamma:0','batch_normalization / beta:0','conv2d_1 / kernel:0', 'conv2d_1 / bias:0','batch_normalization_1 / gamma:0','batch_normalization_1 / beta:0','dense / kernel:0','dense / bias:0','dense_1 / kernel:0','dense_1 / bias:0']。
错误来自以下代码行,但不确定如何解决:
model.fit_generator(x_train, steps_per_epoch=128, epochs=EPOCHS,
validation_data=y_train, validation_steps=128)
谢谢
答案 0 :(得分:0)
弄清楚了。由于tf模型中的最终输出层,我的Logit与标签形状不匹配。
NUM_CATEGORIES = 2
tf.keras.layers.Dense(NUM_CATEGORIES, activation="sigmoid")
我将单位设置为2而不是1,所以我的输出形状是(None,2)而不是(None,1)