我有图像和标签。我将它们分为测试和训练集。 (xtrain, 火车 xtest, ytest)。 x表示图像,y表示标签。 如何在以下火车模型中使用这些集合
**# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# Test the model
model.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch
mean/variance)**
答案 0 :(得分:0)
from torch.utils.data import Dataset, DataLoader
training_set = Dataset(xtrain, ytrain)
test_set = Dataset(xtest, ytest)
params = {'batch_size': 64,
'shuffle': True}
train_loader = DataLoader(training_set, **params)