总共有6个任务,这些任务需要根据输入json中出现的一个字段的( flag_value )值执行。 如果 flag_value 的值为true,则所有任务都需要以以下方式执行: 然后,第一个任务1与(任务2和任务3一起)平行,与任务4平行,与任务5平行。 一旦所有这些完成,那么任务6。 由于是气流和DAG的新手,我不知道如何在这种情况下运行。
如果 flag_value 的值为false,则该顺序仅是顺序的
任务_1 >>任务4 >>任务5 >>任务6。
下面是我的DAG代码。
from airflow import DAG
from datetime import datetime
from airflow.providers.databricks.operators.databricks import DatabricksSubmitRunOperator
default_args = {
'owner': 'airflow',
'depends_on_past': False
}
dag = DAG('DAG_FOR_TEST',default_args=default_args,schedule_interval=None,max_active_runs=3, start_date=datetime(2020, 7, 8))
#################### CREATE TASK #####################################
task_1 = DatabricksSubmitRunOperator(
task_id='task_1',
databricks_conn_id='connection_id_details',
existing_cluster_id='{{ dag_run.conf.clusterId }}',
libraries= [
{
'jar': 'dbfs:/task_1/task_1.jar'
}
],
spark_jar_task={
'main_class_name': 'com.task_1.driver.TestClass1',
'parameters' : [
'{{ dag_run.conf.json }}'
]
}
)
task_2 = DatabricksSubmitRunOperator(
task_id='task_2',
databricks_conn_id='connection_id_details',
existing_cluster_id='{{ dag_run.conf.clusterId }}',
libraries= [
{
'jar': 'dbfs:/task_2/task_2.jar'
}
],
spark_jar_task={
'main_class_name': 'com.task_2.driver.TestClass2',
'parameters' : [
'{{ dag_run.conf.json }}'
]
}
)
task_3 = DatabricksSubmitRunOperator(
task_id='task_3',
databricks_conn_id='connection_id_details',
existing_cluster_id='{{ dag_run.conf.clusterId }}',
libraries= [
{
'jar': 'dbfs:/task_3/task_3.jar'
}
],
spark_jar_task={
'main_class_name': 'com.task_3.driver.TestClass3',
'parameters' : [
'{{ dag_run.conf.json }}'
]
}
)
task_4 = DatabricksSubmitRunOperator(
task_id='task_4',
databricks_conn_id='connection_id_details',
existing_cluster_id='{{ dag_run.conf.clusterId }}',
libraries= [
{
'jar': 'dbfs:/task_4/task_4.jar'
}
],
spark_jar_task={
'main_class_name': 'com.task_4.driver.TestClass4',
'parameters' : [
'{{ dag_run.conf.json }}'
]
}
)
task_5 = DatabricksSubmitRunOperator(
task_id='task_5',
databricks_conn_id='connection_id_details',
existing_cluster_id='{{ dag_run.conf.clusterId }}',
libraries= [
{
'jar': 'dbfs:/task_5/task_5.jar'
}
],
spark_jar_task={
'main_class_name': 'com.task_5.driver.TestClass5',
'parameters' : [
'json ={{ dag_run.conf.json }}'
]
}
)
task_6 = DatabricksSubmitRunOperator(
task_id='task_6',
databricks_conn_id='connection_id_details',
existing_cluster_id='{{ dag_run.conf.clusterId }}',
libraries= [
{
'jar': 'dbfs:/task_6/task_6.jar'
}
],
spark_jar_task={
'main_class_name': 'com.task_6.driver.TestClass6',
'parameters' : ['{{ dag_run.conf.json }}'
]
}
)
flag_value='{{ dag_run.conf.json.flag_value }}'
#################### ORDER OF OPERATORS ###########################
if flag_value == 'true':
task_1.dag = dag
task_2.dag = dag
task_3.dag = dag
task_4.dag = dag
task_5.dag = dag
task_6.dag = dag
task_1 >> [task_2 , task_3] >> [task_4] >> [task_5] >> task_6 // Not sure correct
else:
task_1.dag = dag
task_4.dag = dag
task_5.dag = dag
task_6.dag = dag
task_1 >> task_4 >> task_5 >> task_6
答案 0 :(得分:0)
首先,依赖关系不正确,这应该可以工作:
task_1 >> [task_2 , task_3] >> task_4 >> task_5 >> task_6
无法通过list_1 >> list_2
来订购任务,但是可以使用辅助方法来提供任务,请参见:cross_downstream。
对于分支,您可以使用BranchPythonOperator
更改trigger rules个任务。不确定以下代码,可能会有一些小错误,但是这里的想法可行。
task_4.trigger_rule = "none_failed"
dummy = DummyOperator(task_id="dummy", dag=dag)
branch = BranchPythonOperator(
task_id="branch",
# jinja template returns string "True" or "False"
python_callable=lambda f: ["task_2" , "task_3"] if f == "True" else "dummy",
op_kwargs={"f": flag_value},
dag=dag)
task_1 >> branch
branch >> [task_2 , task_3, dummy] >> task_4
task_4 >> task_5 >> task_6
可能会有更好的方法。