使用Spark / Java根据条件联接两个数据框

时间:2020-07-08 06:02:15

标签: java sql dataframe apache-spark

我在spark上有3个数据帧:dataframe1,dataframe2和dataframe3。

我想根据条件将dataframe1与其他数据框连接起来。

我使用以下代码:

Dataset <Row> df= dataframe1.filter(when(col("diffDate").lt(3888),dataframe1.join(dataframe2,
            dataframe2.col("id_device").equalTo(dataframe1.col("id_device")).
            and(dataframe2.col("id_vehicule").equalTo(dataframe1.col("id_vehicule"))).
            and(dataframe2.col("tracking_time").lt(dataframe1.col("tracking_time")))).orderBy(dataframe2.col("tracking_time").desc())).
                   otherwise(dataframe1.join(dataframe3,
                   dataframe3.col("id_device").equalTo(dataframe1.col("id_device")).
                           and(dataframe3.col("id_vehicule").equalTo(dataframe1.col("id_vehicule"))).
                           and(dataframe3.col("tracking_time").lt(dataframe1.col("tracking_time")))).orderBy(dataframe3.col("tracking_time").desc())));

但是我得到了这个异常

Exception in thread "main" java.lang.RuntimeException: Unsupported literal type class org.apache.spark.sql.Dataset

编辑

输入数据框:

dataframe1

+-----------+-------------+-------------+-------------+
| diffDate  |id_device    |id_vehicule  |tracking_time|
+-----------+-------------+-------------+-------------+
|222        |1            |5            |2020-05-30   |          
|4700       |8            |9            |2019-03-01   |
+-----------+-------------+-------------+-------------+

dataframe2

+-----------+-------------+-------------+-------------+
|id_device  |id_vehicule  |tracking_time|longitude    |
+-----------+-------------+-------------+-------------+
|1          |5            |2020-05-12   | 33.21111    |       
|8          |9            |2019-03-01   |20.2222      |
+-----------+-------------+-------------+-------------+

dataframe3

+-----------+-------------+-------------+-------------+
|id_device  |id_vehicule  |tracking_time|latitude     |
+-----------+-------------+-------------+-------------+
|1          |5            |2020-05-12   | 40.333      |       
|8          |9            |2019-02-28   |2.00000      |
+-----------+-------------+-------------+-------------+

当diffDate <3888

+-----------+-------------+-------------+-------------+-----------+-------------+-------------+------------+
| diffDate  |id_device    |id_vehicule  |tracking_time|id_device  |id_vehicule  |tracking_time|longitude|
+-----------+-------------+-------------+-------------+ +-----------+-------------+-------------+-------------+
|222        |1            |5            |2020-05-30   | 1          |5            |2020-05-12   | 33.21111    |       
-----------+--------------+---------------+----------+----------+--------+-----------+--------------+-----------+         

当diffDate> 3888时

 +-----------+-------------+-------------+-------------+-----------+-------------+-------------+------------+
| diffDate  |id_device    |id_vehicule  |tracking_time|id_device  |id_vehicule  |tracking_time|latitude|
+-----------+-------------+-------------+-------------+ +-----------+-------------+-------------+-------------+
|4700        |9            |5            |2019-03-01   | 8          |9            |2019-02-28   | 2.00000    |       
-----------+--------------+---------------+----------+----------+--------+-----------+--------------+-----------+         

我需要你的帮助

谢谢。

1 个答案:

答案 0 :(得分:1)

我认为您需要重新访问代码。

您正在尝试对dataframe1的每一行执行联接(当然基于条件),我认为这是不正确的要求或被误解的要求。

when(condition, then).otherwise()函数为基础数据帧的每一行执行,通常用于根据条件处理该列。函数中的thenelse/otherwise子句仅支持literals,它们是数据框基本/复杂类型和文字中的现有列。 您不能在其中放置数据框或任何将数据框输出的操作

您可能需要将datafrmae1的行中的datafrmae2col("diffDate").lt(3888)连接起来。为此,您可以执行以下操作-

dataframe1.join(dataframe2,
                dataframe2.col("id_device").equalTo(dataframe1.col("id_device")).
                        and(dataframe2.col("id_vehicule").equalTo(dataframe1.col("id_vehicule"))).
                        and(dataframe2.col("tracking_time").lt(dataframe1.col("tracking_time"))).
                        and(dataframe1.col("diffDate").lt(3888))
                )
                        .orderBy(dataframe2.col("tracking_time").desc())

Edit-1


        dataframe1.as("a").join(dataframe2.as("b"),
                dataframe2.col("id_device").equalTo(dataframe1.col("id_device")).
                        and(dataframe2.col("id_vehicule").equalTo(dataframe1.col("id_vehicule"))).
                        and(dataframe2.col("tracking_time").lt(dataframe1.col("tracking_time"))).
                        and(dataframe1.col("diffDate").lt(3888))
        ).selectExpr("a.*", "b.longitude", "null as latitude")
                .unionByName(
                        dataframe1.as("a").join(dataframe3.as("c"),
                                dataframe3.col("id_device").equalTo(dataframe1.col("id_device")).
                                        and(dataframe3.col("id_vehicule").equalTo(dataframe1.col("id_vehicule"))).
                                        and(dataframe3.col("tracking_time").lt(dataframe1.col("tracking_time"))).
                                        and(dataframe1.col("diffDate").geq(3888))
                        ).selectExpr("a.*", "c.latitude", "null as longitude")
                               
                )