我正在尝试使用Windows路径(用“”代替“ /”)保存CSV文件。由于Windows路径,我认为它不起作用。
代码:
from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.sql import Row
def init_spark(appname):
spark = SparkSession.builder.appName(appname).getOrCreate()
sc = spark.sparkContext
return spark,sc
def run_on_configs_spark():
spark,sc = init_spark(appname="bucket_analysis")
p_configs_RDD = sc.parallelize([1,4,5])
p_configs_RDD=p_configs_RDD.map(mul)
schema = StructType([StructField('a', IntegerType()), StructField('b', IntegerType())])
df=spark.createDataFrame(p_configs_RDD,schema)
df.write.saveAsTable(r"C:\Users\yuvalr\Desktop\example_csv",format="csv")
def mul(x):
return (x,x**2)
run_on_configs_spark()
错误代码:
Traceback (most recent call last):
File "C:/Users/yuvalr/Desktop/Git_folder/algo_sim/Bucket_analysis/Set_multiple_configurations/run_multiple_configurations.py", line 426, in <module>
analysis()
File "C:/Users/yuvalr/Desktop/Git_folder/algo_sim/Bucket_analysis/Set_multiple_configurations/run_multiple_configurations.py", line 408, in analysis
run_CDH()
File "C:/Users/yuvalr/Desktop/Git_folder/algo_sim/Bucket_analysis/Set_multiple_configurations/run_multiple_configurations.py", line 420, in run_CDH
max_prob_for_extension=None, max_base_size_B=4096,OP_arr=[0.2],
File "C:/Users/yuvalr/Desktop/Git_folder/algo_sim/Bucket_analysis/Set_multiple_configurations/run_multiple_configurations.py", line 173, in settings_print
dic=get_map_of_worst_seq(params)
File "C:/Users/yuvalr/Desktop/Git_folder/algo_sim/Bucket_analysis/Set_multiple_configurations/run_multiple_configurations.py", line 245, in get_map_of_worst_seq
run_over_settings_spark_test(info_obj)
File "C:/Users/yuvalr/Desktop/Git_folder/algo_sim/Bucket_analysis/Set_multiple_configurations/run_multiple_configurations.py", line 239, in run_over_settings_spark_test
run_on_configs_spark(configs)
File "C:\Users\yuvalr\Desktop\Git_folder\algo_sim\Bucket_analysis\Set_multiple_configurations\spark_parallelized_configs.py", line 17, in run_on_configs_spark
df.write.saveAsTable(r"C:\Users\yuvalr\Desktop\example_csv",format="csv")
File "C:\Users\yuvalr\Desktop\spark\Spark\python\pyspark\sql\readwriter.py", line 868, in saveAsTable
self._jwrite.saveAsTable(name)
File "C:\Users\yuvalr\venv\lib\site-packages\py4j\java_gateway.py", line 1305, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "C:\Users\yuvalr\Desktop\spark\Spark\python\pyspark\sql\utils.py", line 137, in deco
raise_from(converted)
File "<string>", line 3, in raise_from
pyspark.sql.utils.ParseException:
mismatched input ':' expecting {<EOF>, '.', '-'}(line 1, pos 1)
== SQL ==
C:\Users\yuvalr\Desktop\example_csv
-^^^
答案 0 :(得分:1)
正如我所见,问题出在您的输出行:
尝试以下方法:
df.write.csv("file:///C:/Users/yuvalr/Desktop/example_csv.csv")
.csv
,您可能只会创建一个名为example_csv
的文件夹r""
字符串file:///
确认这是我们正在讨论的文件答案 1 :(得分:0)
如您所见,saveAsTable()
期望提供一个tablename
并可以写成
目录spark.sql.warehouse.dir
saveAsTable(name,format = None,mode = None,partitionBy = None,** options)
参数
来源:https://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.DataFrameWriter
解决方法:(注意Windows C:\\
)
设置spark.sql.warehouse.dir指向目标目录如下
from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.sql import Row
def init_spark(appname):
spark = SparkSession.builder\
.config("spark.sql.warehouse.dir", "C:\\Users\yuvalr\Desktop")\
.appName(appname).getOrCreate()
sc = spark.sparkContext
return spark,sc
def run_on_configs_spark():
spark,sc = init_spark(appname="bucket_analysis")
p_configs_RDD = sc.parallelize([1,4,5])
p_configs_RDD=p_configs_RDD.map(mul)
schema = StructType([StructField('a', IntegerType()), StructField('b', IntegerType())])
df=spark.createDataFrame(p_configs_RDD,schema)
df.write.saveAsTable("example_csv",format="csv",mode="overwrite")
def mul(x):
return (x,x**2)
run_on_configs_spark()
编辑1: 如果它是外部表(存储基础文件的外部路径),则可以在下面使用
#df.write.option("path","C:\\Users\yuvalr\Desktop").saveAsTable("example_csv",format="csv",mode="overwrite")
from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.sql import Row
def init_spark(appname):
spark = SparkSession.builder\
.appName(appname).getOrCreate()
sc = spark.sparkContext
return spark,sc
def run_on_configs_spark():
spark,sc = init_spark(appname="bucket_analysis")
p_configs_RDD = sc.parallelize([1,4,5])
p_configs_RDD=p_configs_RDD.map(mul)
schema = StructType([StructField('a', IntegerType()), StructField('b', IntegerType())])
df=spark.createDataFrame(p_configs_RDD,schema)
df.write.option("path","C:\\Users\yuvalr\Desktop").saveAsTable("example_csv",format="csv",mode="overwrite")
def mul(x):
return (x,x**2)
run_on_configs_spark()