我已经为基本的SIR模型绘制了一个图。我对自己的情节感到满意,但是,我希望能够有一个可以调整参数beta和gamma的交互式滑块。我希望它们的范围都从0到1,并且用户希望能够将它们增加0.01。
有人可以帮助我在我的代码中实现吗?谢谢您的宝贵时间。
这是我的代码:
# # Solving SIR Model in Python (INTERACTIVE)
# \
# Importing packages:
# In[10]:
# Display in LaTeX style.
from sympy.interactive import printing
printing.init_printing(use_latex = True)
# For integration.
import scipy.integrate
# For arrays (Python does not have native arrays).
import numpy as np
# For graphing.
import matplotlib.pyplot as plt
# Prevents the pop-up graphs in a separate window.
get_ipython().run_line_magic('matplotlib', 'inline')
# Allows for an interactive widget bar.
from ipywidgets import interactive
# \
# Defining differential equations:
# In[11]:
def SIR_model(y, t, beta, gamma):
S, I, R = y
dS_dt = -beta*S*I
dI_dt = beta*S*I - gamma*I
dR_dt = gamma*I
return([dS_dt, dI_dt, dR_dt,])
# \
# Defining initial conditions:
# In[12]:
S0 = 0.95
I0 = 0.05
R0 = 0.0
beta = 0.35
gamma = 0.1
# \
# Defining time vector:
# In[13]:
# Graph from 0 to 100, include 10000 points.
t = np.linspace(0, 100, 10000)
# \
# Defining solution:
# In[14]:
# Result
solution = scipy.integrate.odeint(SIR_model, [S0, I0, R0], t, args=(beta, gamma))
solution = np.array(solution)
# \
# Plotting the result:
# In[20]:
plt.figure(figsize=[8, 5])
plt.plot(t, solution[:, 0], label="S(t)")
plt.plot(t, solution[:, 1], label="I(t)")
plt.plot(t, solution[:, 2], label="R(t)")
plt.grid()
plt.legend()
plt.title("SIR Model")
plt.xlabel("Time")
plt.ylabel("Proportions of Populations")
# THIS DOES NOT WORK !!!
#interactive_plot = interactive(SIR_model, betta=(0.35,1,0.01), gamma=(0.1,1,0.01))
#interactive_plot
plt.show()
这是输出。
答案 0 :(得分:1)
您需要创建一个函数来一次性处理所有输入,积分和绘图(sir_interactive_func
),如下所示:
# For integration.
import scipy.integrate
# For arrays (Python does not have native arrays).
import numpy as np
# For graphing.
import matplotlib.pyplot as plt
# Prevents the pop-up graphs in a separate window.
get_ipython().run_line_magic('matplotlib', 'inline')
# Allows for an interactive widget bar.
from ipywidgets import interactive
S0 = 0.95
I0 = 0.05
R0 = 0.0
def SIR_model(y, t, beta, gamma):
S, I, R = y
dS_dt = -beta*S*I
dI_dt = beta*S*I - gamma*I
dR_dt = gamma*I
return([dS_dt, dI_dt, dR_dt,])
def sir_interactive_func(beta, gamma):
# Graph from 0 to 100, include 10000 points.
t = np.linspace(0, 100, 10000)
solution = scipy.integrate.odeint(SIR_model, [S0, I0, R0], t, args=(beta, gamma))
solution = np.array(solution)
plt.figure(figsize=[8, 5])
plt.plot(t, solution[:, 0], label="S(t)")
plt.plot(t, solution[:, 1], label="I(t)")
plt.plot(t, solution[:, 2], label="R(t)")
plt.grid()
plt.legend()
plt.title("SIR Model")
plt.xlabel("Time")
plt.ylabel("Proportions of Populations")
interactive_plot = interactive(sir_interactive_func, beta=(0.35,1,0.01), gamma=(0.1,1,0.01))
interactive_plot