使用寓言汇总预测

时间:2020-07-02 08:44:46

标签: r dplyr forecasting fable tidyverts

问题: 使用寓言,我可以轻松地生成具有分组结构的时间序列的预测,甚至可以使用寓言的aggregate_key / reconcile语法生成一致的顶级预测。但是,我无法使用此方法轻松访问汇总预测,而我正在使用的替代方法是放弃寓言(预测表)结构。谁能告诉我使用该软件包是否有更简单/计划的方法?如您在示例中看到的,我可以使用其他方法到达那里,但是我想知道是否有更好的方法。感谢您的任何帮助!

方法1: 我在不使用aggregate_key / reconcile的情况下总结预测的工作主要是使用dplyr的group_bysummarise,但是将预测的预测间隔格式化为正态分布对象,似乎不支持使用此方法进行求和。为了解决这个问题,我一直在使用hilounpack_hilo来提取不同预测间隔的边界,然后可以使用常规方法对其进行求和。但是我真的很想保留寓言结构和分发对象,使用这种方法是不可能的。

方法2: 使用aggregate_key / reconcile的替代方法似乎仅支持使用min_trace的聚合。我知道这种方法是为了实现最佳对帐,而我想要的是一种简单的自下而上的汇总预测。感觉应该有一种使用此语法自下而上的预测的简便方法,但到目前为止,我还没有找到一种方法。此外,即使使用min_trace,我也不确定如何访问汇总预测本身,如您在示例中所见!

使用方法1的示例:

library(fable)
#> Loading required package: fabletools
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union

lung_deaths_agg <- as_tsibble(cbind(mdeaths, fdeaths))
  
fc_1 <- lung_deaths_agg %>% 
  model(lm = TSLM(value ~ trend() + season())) %>% 
  forecast()

fc_1
#> # A fable: 48 x 5 [1M]
#> # Key:     key, .model [2]
#>    key     .model    index        value .mean
#>    <chr>   <chr>     <mth>       <dist> <dbl>
#>  1 fdeaths lm     1980 Jan N(794, 5940)  794.
#>  2 fdeaths lm     1980 Feb N(778, 5940)  778.
#>  3 fdeaths lm     1980 Mar N(737, 5940)  737.
#>  4 fdeaths lm     1980 Apr N(577, 5940)  577.
#>  5 fdeaths lm     1980 May N(456, 5940)  456.
#>  6 fdeaths lm     1980 Jun N(386, 5940)  386.
#>  7 fdeaths lm     1980 Jul N(379, 5940)  379.
#>  8 fdeaths lm     1980 Aug N(335, 5940)  335.
#>  9 fdeaths lm     1980 Sep N(340, 5940)  340.
#> 10 fdeaths lm     1980 Oct N(413, 5940)  413.
#> # ... with 38 more rows

fc_1 %>%
  hilo() %>% 
  unpack_hilo(c(`80%`, `95%`)) %>% 
  as_tibble() %>% 
  group_by(index) %>% 
  summarise(across(c(.mean, ends_with("upper"), ends_with("lower")), sum))
#> `summarise()` ungrouping output (override with `.groups` argument)
#> # A tibble: 24 x 6
#>       index .mean `80%_upper` `95%_upper` `80%_lower` `95%_lower`
#>       <mth> <dbl>       <dbl>       <dbl>       <dbl>       <dbl>
#>  1 1980 Jan 2751.       3089.       3267.       2414.       2236.
#>  2 1980 Feb 2687.       3024.       3202.       2350.       2171.
#>  3 1980 Mar 2535.       2872.       3051.       2198.       2020.
#>  4 1980 Apr 2062.       2399.       2577.       1725.       1546.
#>  5 1980 May 1597.       1934.       2113.       1260.       1082.
#>  6 1980 Jun 1401.       1738.       1916.       1064.        885.
#>  7 1980 Jul 1343.       1680.       1858.       1006.        827.
#>  8 1980 Aug 1200.       1538.       1716.        863.        685.
#>  9 1980 Sep 1189.       1527.       1705.        852.        674.
#> 10 1980 Oct 1482.       1819.       1998.       1145.        967.
#> # ... with 14 more rows

使用方法2的示例

fc_2 <- lung_deaths_agg %>%
  aggregate_key(key, value = sum(value)) %>% 
  model(lm = TSLM(value ~ trend() + season())) %>%
  reconcile(lm = min_trace(lm)) %>% 
  forecast()

fc_2
#> # A fable: 72 x 5 [1M]
#> # Key:     key, .model [3]
#>    key     .model    index        value .mean
#>    <chr>   <chr>     <mth>       <dist> <dbl>
#>  1 fdeaths lm     1980 Jan N(794, 5606)  794.
#>  2 fdeaths lm     1980 Feb N(778, 5606)  778.
#>  3 fdeaths lm     1980 Mar N(737, 5606)  737.
#>  4 fdeaths lm     1980 Apr N(577, 5606)  577.
#>  5 fdeaths lm     1980 May N(456, 5606)  456.
#>  6 fdeaths lm     1980 Jun N(386, 5606)  386.
#>  7 fdeaths lm     1980 Jul N(379, 5606)  379.
#>  8 fdeaths lm     1980 Aug N(335, 5606)  335.
#>  9 fdeaths lm     1980 Sep N(340, 5606)  340.
#> 10 fdeaths lm     1980 Oct N(413, 5606)  413.
#> # ... with 62 more rows

fc_2 %>% as_tibble() %>% select(key) %>% slice(50:55)
#> # A tibble: 6 x 1
#>   key         
#>   <chr>       
#> 1 <aggregated>
#> 2 <aggregated>
#> 3 <aggregated>
#> 4 <aggregated>
#> 5 <aggregated>
#> 6 <aggregated>

fc_2 %>% as_tibble() %>% select(key) %>% filter(key == "<aggregated>")
#> # A tibble: 0 x 1
#> # ... with 1 variable: key <chr>

1 个答案:

答案 0 :(得分:2)

方法1:

将发行版加在一起时,使用发行版需要更多的注意(而不是数字)。更具体地说,可以添加正态分布的平均值而不会出现问题:

library(distributional)
mean(dist_normal(2,3) + dist_normal(4,1))
#> [1] 6
mean(dist_normal(2,3)) + mean(dist_normal(4,1))
#> [1] 6

reprex package(v0.3.0)于2020-07-03创建

但是,分位数(用于产生80%和95%的间隔)不能:

library(distributional)
quantile(dist_normal(2,3) + dist_normal(4,1), 0.9)
#> [1] 10.05262
quantile(dist_normal(2,3), 0.9) + quantile(dist_normal(4,1), 0.9)
#> [1] 11.12621

reprex package(v0.3.0)于2020-07-03创建

如果要汇总分布,则需要计算分布本身的总和:

library(fable)
library(dplyr)
lung_deaths_agg <- as_tsibble(cbind(mdeaths, fdeaths))

fc_1 <- lung_deaths_agg %>% 
  model(lm = fable::TSLM(value ~ trend() + season())) %>% 
  forecast()
fc_1 %>% 
  summarise(value = sum(value), .mean = mean(value))
#> # A fable: 24 x 3 [1M]
#>       index          value .mean
#>       <mth>         <dist> <dbl>
#>  1 1980 Jan N(2751, 40520) 2751.
#>  2 1980 Feb N(2687, 40520) 2687.
#>  3 1980 Mar N(2535, 40520) 2535.
#>  4 1980 Apr N(2062, 40520) 2062.
#>  5 1980 May N(1597, 40520) 1597.
#>  6 1980 Jun N(1401, 40520) 1401.
#>  7 1980 Jul N(1343, 40520) 1343.
#>  8 1980 Aug N(1200, 40520) 1200.
#>  9 1980 Sep N(1189, 40520) 1189.
#> 10 1980 Oct N(1482, 40520) 1482.
#> # … with 14 more rows

reprex package(v0.3.0)于2020-07-03创建

请注意,这需要fabletools(> = 0.2.0.9000)和发行版(> = 0.1.0.9000)的开发版本,因为我添加了新功能才能使此示例正常工作。

方法2:

可以使用fabletools:::bottom_up()获得对自下而上对帐的实验支持。这是当前的内部功能,因为我仍在研究如何在fabletools中更广泛地进行对帐的细节。

匹配汇总值应使用is_aggregated()

fc_2 <- lung_deaths_agg %>%
  aggregate_key(key, value = sum(value)) %>% 
  model(lm = TSLM(value ~ trend() + season())) %>%
  reconcile(lm = min_trace(lm)) %>% 
  forecast()

fc_2 %>% 
  filter(is_aggregated(key))
#> # A fable: 24 x 5 [1M]
#> # Key:     key, .model [1]
#>    key          .model    index          value .mean
#>    <chr>        <chr>     <mth>         <dist> <dbl>
#>  1 <aggregated> lm     1980 Jan N(2751, 24989) 2751.
#>  2 <aggregated> lm     1980 Feb N(2687, 24989) 2687.
#>  3 <aggregated> lm     1980 Mar N(2535, 24989) 2535.
#>  4 <aggregated> lm     1980 Apr N(2062, 24989) 2062.
#>  5 <aggregated> lm     1980 May N(1597, 24989) 1597.
#>  6 <aggregated> lm     1980 Jun N(1401, 24989) 1401.
#>  7 <aggregated> lm     1980 Jul N(1343, 24989) 1343.
#>  8 <aggregated> lm     1980 Aug N(1200, 24989) 1200.
#>  9 <aggregated> lm     1980 Sep N(1189, 24989) 1189.
#> 10 <aggregated> lm     1980 Oct N(1482, 24989) 1482.
#> # … with 14 more rows

reprex package(v0.3.0)于2020-07-03创建

将聚合向量与"<aggregated>"进行比较是模棱两可的,因为密钥的字符值可能是"<aggregated>",而值却不是<aggregated>。现在,我更新了fabletools,以使"<aggregated>"与带有警告和提示的汇总值匹配,因此此代码现在给出:

fc_2 %>% 
  filter(key == "<aggregated>")
#> Warning: <aggregated> character values have been converted to aggregated values.
#> Hint: If you're trying to compare aggregated values, use `is_aggregated()`.
#> # A fable: 24 x 5 [1M]
#> # Key:     key, .model [1]
#>    key          .model    index          value .mean
#>    <chr>        <chr>     <mth>         <dist> <dbl>
#>  1 <aggregated> lm     1980 Jan N(2751, 24989) 2751.
#>  2 <aggregated> lm     1980 Feb N(2687, 24989) 2687.
#>  3 <aggregated> lm     1980 Mar N(2535, 24989) 2535.
#>  4 <aggregated> lm     1980 Apr N(2062, 24989) 2062.
#>  5 <aggregated> lm     1980 May N(1597, 24989) 1597.
#>  6 <aggregated> lm     1980 Jun N(1401, 24989) 1401.
#>  7 <aggregated> lm     1980 Jul N(1343, 24989) 1343.
#>  8 <aggregated> lm     1980 Aug N(1200, 24989) 1200.
#>  9 <aggregated> lm     1980 Sep N(1189, 24989) 1189.
#> 10 <aggregated> lm     1980 Oct N(1482, 24989) 1482.
#> # … with 14 more rows

reprex package(v0.3.0)于2020-07-03创建