我正在尝试使用自定义损失函数,该函数取决于模型没有的一些参数。
该模型有两个输入(mel_specs
和pred_inp
),并期望使用labels
张量进行训练:
def to_keras_example(example):
# Preparing inputs
return (mel_specs, pred_inp), labels
# Is a tf.train.Dataset for model.fit(train_data, ...)
train_data = load_dataset(fp, 'train).map(to_keras_example).repeat()
在损失函数中,我需要计算mel_specs
和pred_inp
的长度。这意味着我的损失看起来像这样:
def rnnt_loss_wrapper(y_true, y_pred, mel_specs_inputs_):
input_lengths = get_padded_length(mel_specs_inputs_[:, :, 0])
label_lengths = get_padded_length(y_true)
return rnnt_loss(
acts=y_pred,
labels=tf.cast(y_true, dtype=tf.int32),
input_lengths=input_lengths,
label_lengths=label_lengths
)
但是,无论我选择哪种方法,我都面临一些问题。
如果我实际上包装了损失函数s.t.它返回一个函数,该函数需要像这样的y_true
和y_pred
:
def rnnt_loss_wrapper(mel_specs_inputs_):
def inner_(y_true, y_pred):
input_lengths = get_padded_length(mel_specs_inputs_[:, :, 0])
label_lengths = get_padded_length(y_true)
return rnnt_loss(
acts=y_pred,
labels=tf.cast(y_true, dtype=tf.int32),
input_lengths=input_lengths,
label_lengths=label_lengths
)
return inner_
model = create_model(hparams)
model.compile(
optimizer=optimizer,
loss=rnnt_loss_wrapper(model.inputs[0]
)
在致电_SymbolicException
之后,我得到了model.fit()
:
tensorflow.python.eager.core._SymbolicException: Inputs to eager execution function cannot be Keras symbolic tensors, but found [...]
add_loss()
的文档中指出:
[Adds a..] loss tensor(s), potentially dependent on layer inputs. .. Arguments: losses: Loss tensor, or list/tuple of tensors. Rather than tensors, losses may also be zero-argument callables which create a loss tensor. inputs: Ignored when executing eagerly. If anything ...
所以我尝试执行以下操作:
def rnnt_loss_wrapper(y_true, y_pred, mel_specs_inputs_):
input_lengths = get_padded_length(mel_specs_inputs_[:, :, 0])
label_lengths = get_padded_length(y_true)
return rnnt_loss(
acts=y_pred,
labels=tf.cast(y_true, dtype=tf.int32),
input_lengths=input_lengths,
label_lengths=label_lengths
)
model = create_model(hparams)
model.add_loss(
rnnt_loss_wrapper(
y_true=model.inputs[2],
y_pred=model.outputs[0],
mel_specs_inputs_=model.inputs[0],
),
inputs=True
)
model.compile(
optimizer=optimizer
)
但是,调用model.fit()
会抛出ValueError
:
ValueError: No gradients provided for any variable: [...]
以上任何选项都应该起作用吗?
答案 0 :(得分:0)
我使用了 add_loss 方法如下:
def custom_loss(y_true, y_pred, input_):
# custom loss function
y_estim = input_[...,0]*y_pred
shape = tf.cast(tf.shape(y_true)[1], dtype='float32')
return tf.reduce_mean(1/shape*tf.reduce_sum(tf.pow(y_true-y_estim, 2), axis=1))
mix_input = layers.Input(shape=(301, 257, 4)) # input 1
ref_input = layers.Input(shape=(301, 257, 1)) # input 2
target = layers.Input(shape=(301, 257)) # output target
smss_model = Model(inputs=[mix_input, ref_input], outputs=smss) # my model that accept two inputs
model = Model(inputs=[mix_input, ref_input, target], outputs=smss) # this one used just to train the model, with the additional paramters
model.add_loss(custom_loss(target, smss, mix_input)) # the add_loss where to pass the custom loss function
model.summary()
model.compile(loss=None, optimizer='sgd')
model.fit([mix, ref, y], epochs=1, batch_size=1, verbose=1)
即使我使用过这种方法并且有效,我仍在寻找另一种方法,不涉及创建训练模型
答案 1 :(得分:-2)
使用lambda函数起作用吗? (https://www.w3schools.com/python/python_lambda.asp)
loss = lambda x1, x2: rnnt_loss(x1, x2, acts, labels, input_lengths,
label_lengths, blank_label=0)
通过这种方式,损失函数应该是接受参数x1
和x2
的函数,但是rnnt_loss也可以知道acts
,labels
,{{1} },input_lengths
和label_lengths