假设我有一个具有日期和ID列的数据框。这是一个时间序列数据集。所以我需要为此数据帧生成一个时间序列标识符。也就是说,我需要添加一个与每个唯一集合相对应的值。有办法吗?
df = pd.DataFrame({'Date':[2012-01-01, 2012-01-01, 2012-01-01, 2012-01-02, 2012-01-02, 2012-01-03, 2012-01-03, 2012-01-03, 2012-01-04, 2012-01-01, 2012-01-04],
'Id':[1,2,3,4,5,6,7,8,9,10,11]})
print(df)
输出:
Date Id
2012-01-01 1
2012-01-01 2
2012-01-01 3
2012-01-02 4
2012-01-02 5
2012-01-03 6
2012-01-03 7
2012-01-03 8
2012-01-04 9
2012-01-01 10
2012-01-04 11
我需要根据日期的唯一性来订购日期
Date Id TimeID
2012-01-01 1 0
2012-01-02 4 0
2012-01-03 6 0
2012-01-04 9 0
2012-01-01 2 1
2012-01-02 5 1
2012-01-03 7 1
2012-01-04 11 1
2012-01-01 3 2
2012-01-03 8 2
2012-01-01 10 3
答案 0 :(得分:2)
将GroupBy.cumcount
与DataFrame.sort_values
一起使用:
df['TimeID'] = df.groupby('Date').cumcount()
df = df.sort_values('TimeID')
print (df)
Date Id TimeID
0 2012-01-01 1 0
3 2012-01-02 4 0
5 2012-01-03 6 0
8 2012-01-04 9 0
1 2012-01-01 2 1
4 2012-01-02 5 1
6 2012-01-03 7 1
10 2012-01-04 11 1
2 2012-01-01 3 2
7 2012-01-03 8 2
9 2012-01-01 10 3
答案 1 :(得分:0)
首先,使用pd.to_datetime()
将字符串日期转换为日期时间。
然后,按照this solution使用groupby()
和.cumcount()
:
import pandas as pd
df = pd.DataFrame({'Date': ['2012-01-01','2012-01-01','2012-01-01','2012-01-02',
'2012-01-02','2012-01-03','2012-01-03','2012-01-03','2012-01-04','2012-01-01','2012-01-04'],
'Id': [1,2,3,4,5,6,7,8,9,10,11]})
# strictly, you can read in a datetime as a datetime at pd.read_csv() time
df['Date'] = pd.to_datetime(df['Date'])