“ AttributeError:启用急切执行时,Tensor.name没有意义。”在“ self.optimizer.apply_gradients”上进行TPU训练时

时间:2020-06-28 02:15:20

标签: tensorflow keras tpu

我的代码可以在GPU上正常工作,但是对于TPU,我从以下位置开始出错:

self.optimizer.apply_gradients(zip(gradients, trainable_vars))

AttributeError: Tensor.name is meaningless when eager execution is enabled.

我有一个自定义模型,与Keras的默认设置没什么不同

class CustomModel(tf.keras.Model):
    def train_step(self, data):
        # Unpack the data. Its structure depends on your model and
        # on what you pass to `fit()`.
        x = data
        y = tf.Variable(tf.constant([1.0], dtype=tf.float32))

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)

        # Compute gradients
        trainable_vars = self.trainable_variables
        gradients = tape.gradient(loss, trainable_vars)
        # Update weights
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))
        # Update metrics (includes the metric that tracks the loss)
        self.compiled_metrics.update_state(y, y_pred)
        # Return a dict mapping metric names to current value
        return {m.name: m.result() for m in self.metrics}

这是完整的错误消息

Epoch 1/3
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-19-00fb5a641066> in <module>()
      5         validation_steps=val_steps,
      6         validation_freq=1,
----> 7         callbacks=callbacks)

10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
     64   def _method_wrapper(self, *args, **kwargs):
     65     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
---> 66       return method(self, *args, **kwargs)
     67 
     68     # Running inside `run_distribute_coordinator` already.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
    846                 batch_size=batch_size):
    847               callbacks.on_train_batch_begin(step)
--> 848               tmp_logs = train_function(iterator)
    849               # Catch OutOfRangeError for Datasets of unknown size.
    850               # This blocks until the batch has finished executing.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    578         xla_context.Exit()
    579     else:
--> 580       result = self._call(*args, **kwds)
    581 
    582     if tracing_count == self._get_tracing_count():

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    625       # This is the first call of __call__, so we have to initialize.
    626       initializers = []
--> 627       self._initialize(args, kwds, add_initializers_to=initializers)
    628     finally:
    629       # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    504     self._concrete_stateful_fn = (
    505         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 506             *args, **kwds))
    507 
    508     def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2444       args, kwargs = None, None
   2445     with self._lock:
-> 2446       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2447     return graph_function
   2448 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2775 
   2776       self._function_cache.missed.add(call_context_key)
-> 2777       graph_function = self._create_graph_function(args, kwargs)
   2778       self._function_cache.primary[cache_key] = graph_function
   2779       return graph_function, args, kwargs

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2665             arg_names=arg_names,
   2666             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667             capture_by_value=self._capture_by_value),
   2668         self._function_attributes,
   2669         # Tell the ConcreteFunction to clean up its graph once it goes out of

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    979         _, original_func = tf_decorator.unwrap(python_func)
    980 
--> 981       func_outputs = python_func(*func_args, **func_kwargs)
    982 
    983       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    439         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    440         # the function a weak reference to itself to avoid a reference cycle.
--> 441         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    442     weak_wrapped_fn = weakref.ref(wrapped_fn)
    443 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    966           except Exception as e:  # pylint:disable=broad-except
    967             if hasattr(e, "ag_error_metadata"):
--> 968               raise e.ag_error_metadata.to_exception(e)
    969             else:
    970               raise

AttributeError: in user code:

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function  *
        outputs = self.distribute_strategy.run(
    <ipython-input-6-490916a676f3>:18 train_step  *
        self.optimizer.apply_gradients(zip(gradients, trainable_vars))
    /usr/local/lib/python3.6/dist-packages/tensorflow_addons/optimizers/weight_decay_optimizers.py:149 apply_gradients  *
        return super().apply_gradients(grads_and_vars, name=name)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:472 apply_gradients  **
        grads_and_vars = _filter_grads(grads_and_vars)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1223 _filter_grads
        ([v.name for v in vars_with_empty_grads]))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1223 <listcomp>
        ([v.name for v in vars_with_empty_grads]))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py:1123 name
        "Tensor.name is meaningless when eager execution is enabled.")

    AttributeError: Tensor.name is meaningless when eager execution is enabled.

完整的代码可以在这里

https://colab.research.google.com/drive/1PqAAa0-Dh9cZfLjLQGuqt5zPWBXqZTn6?usp=sharing

我想知道是否缺少某些TPU培训,因为仅在通过TPU进行培训时才会出现此错误。

以下是有关Github的一些可能的问题

https://github.com/tensorflow/tensorflow/issues/33045

https://github.com/tensorflow/tensorflow/issues/34635

编辑:

我注意到Tensorflow改变了他们对train_stephttps://github.com/tensorflow/tensorflow/blob/2434d2401399e3973d2f704f977bd6ad2d029ca7/tensorflow/python/keras/engine/training.py#L716的定义

所以我更新了自定义模型以匹配它。

from tensorflow.python.keras.mixed_precision.experimental import loss_scale_optimizer as lso
from tensorflow.python.distribute import parameter_server_strategy

def _minimize(strategy, tape, optimizer, loss, trainable_variables):
    with tape:
        if isinstance(optimizer, lso.LossScaleOptimizer):
            loss = optimizer.get_scaled_loss(loss)

    gradients = tape.gradient(loss, trainable_variables)
    gradients = [(ClipIfNotNone(grad)) for grad in gradients]
    gradients = [(ClipIfNotNone2(grad)) for grad in gradients]
    # Whether to aggregate gradients outside of optimizer. This requires support
    # of the optimizer and doesn't work with ParameterServerStrategy and
    # CentralStroageStrategy.
    aggregate_grads_outside_optimizer = (
        optimizer._HAS_AGGREGATE_GRAD and  # pylint: disable=protected-access
        not isinstance(strategy.extended,
                        parameter_server_strategy.ParameterServerStrategyExtended))

    if aggregate_grads_outside_optimizer:
        # We aggregate gradients before unscaling them, in case a subclass of
        # LossScaleOptimizer all-reduces in fp16. All-reducing in fp16 can only be
        # done on scaled gradients, not unscaled gradients, for numeric stability.
        gradients = optimizer._aggregate_gradients(zip(gradients,  # pylint: disable=protected-access
                                                    trainable_variables))
    if isinstance(optimizer, lso.LossScaleOptimizer):
        gradients = optimizer.get_unscaled_gradients(gradients)
    gradients = optimizer._clip_gradients(gradients)  # pylint: disable=protected-access
    if trainable_variables:
        if aggregate_grads_outside_optimizer:
            optimizer.apply_gradients(
                zip(gradients, trainable_variables),
                experimental_aggregate_gradients=False)
        else:
            optimizer.apply_gradients(zip(gradients, trainable_variables))

class CustomModel(tf.keras.Model):
    def train_step(self, data):
        # Unpack the data. Its structure depends on your model and
        # on what you pass to `fit()`.
        x = data
        y = tf.constant([1.0], dtype=tf.float32)
        sample_weight = None

        with tf.GradientTape() as tape:
            y_pred = self(x, training=True)  # Forward pass
            # Compute the loss value
            # (the loss function is configured in `compile()`)
            loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)
        
        _minimize(self.distribute_strategy, tape, self.optimizer, loss,
                self.trainable_variables)

        self.compiled_metrics.update_state(y, y_pred, sample_weight)
        return {m.name: m.result() for m in self.metrics}

但是,结果几乎相同

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function  *
        outputs = self.distribute_strategy.run(
    <ipython-input-8-823751185253>:53 train_step  *
        _minimize(self.distribute_strategy, tape, self.optimizer, loss,
    <ipython-input-8-823751185253>:24 _minimize  *
        gradients = optimizer._aggregate_gradients(zip(gradients,  # pylint: disable=protected-access
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:521 _aggregate_gradients  **
        filtered_grads_and_vars = _filter_grads(grads_and_vars)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1223 _filter_grads
        ([v.name for v in vars_with_empty_grads]))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1223 <listcomp>
        ([v.name for v in vars_with_empty_grads]))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py:1123 name
        "Tensor.name is meaningless when eager execution is enabled.")

    AttributeError: Tensor.name is meaningless when eager execution is enabled.

Edit2:

我尝试不完全创建自定义train_step,而只是扩展tf.keras.Model类。仍然遇到相同的问题。

这是我的自定义模型的样子

class Dora_A(tf.keras.Model):
    def __init__(self):
        super(Dora_A, self).__init__()
        self.bioRoberta = TFRobertaModel.from_pretrained('allenai/biomed_roberta_base', from_pt=True)

        self.Q_Tlayer0 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.Q_Tlayer0._name = self.Q_Tlayer0._name + 'Query'
        self.P_Tlayer0 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.P_Tlayer0._name = self.P_Tlayer0._name + 'Passage'

        self.Q_Tlayer1 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.Q_Tlayer1._name = self.Q_Tlayer1._name + 'Query'
        self.P_Tlayer1 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.P_Tlayer1._name = self.P_Tlayer1._name + 'Passage'

        self.Q_Tlayer2 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.Q_Tlayer2._name = self.Q_Tlayer2._name + 'Query'
        self.P_Tlayer2 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.P_Tlayer2._name = self.P_Tlayer2._name + 'Passage'

        self.Q_Tlayer3 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.Q_Tlayer3._name = self.Q_Tlayer3._name + 'Query'
        self.P_Tlayer3 = deepcopy(self.bioRoberta.layers[0].encoder.layer[11])
        self.P_Tlayer3._name = self.P_Tlayer3._name + 'Passage'

        self.Q_Tlayer3.intermediate.intermediate_act_fn = tf.keras.activations.tanh
        self.P_Tlayer3.intermediate.intermediate_act_fn = tf.keras.activations.tanh

        # self.Q_Tlayer0.set_weights(self.Q_Tlayer3.get_weights())
        # self.P_Tlayer0.set_weights(self.P_Tlayer3.get_weights())

        # self.Q_Tlayer1.set_weights(self.Q_Tlayer3.get_weights())
        # self.P_Tlayer1.set_weights(self.P_Tlayer3.get_weights())

        # self.Q_Tlayer2.set_weights(self.Q_Tlayer3.get_weights())
        # self.P_Tlayer2.set_weights(self.P_Tlayer3.get_weights())

        self.Q_ff_1 = tf.keras.layers.Dense(768, activation='swish',  name='qffPost_n1')
        self.P_ff_1 = tf.keras.layers.Dense(768, activation='swish',  name='pffPost_n1')

        self.Q_ff_2 = tf.keras.layers.Dense(768, activation='tanh',  name='qffPost_n2')
        self.P_ff_2 = tf.keras.layers.Dense(768, activation='tanh',  name='pffPost_n2')

    def call(self, inputIds):
        queryInputs, passageInputs = inputIds

        Q_outputs = self.bioRoberta(queryInputs)[0]
        P_outputs = self.bioRoberta(passageInputs)[0]

        Q_outputs = self.Q_Tlayer0((Q_outputs, None, None))[0]
        P_outputs = self.P_Tlayer0((P_outputs, None, None))[0]

        Q_outputs = self.Q_Tlayer1((Q_outputs, None, None))[0]
        P_outputs = self.P_Tlayer1((P_outputs, None, None))[0]

        Q_outputs = self.Q_Tlayer2((Q_outputs, None, None))[0]
        P_outputs = self.P_Tlayer2((P_outputs, None, None))[0]

        Q_outputs = self.Q_Tlayer3((Q_outputs, None, None))[0]
        P_outputs = self.P_Tlayer3((P_outputs, None, None))[0]       

        Q_outputs = tf.concat([
                        Q_outputs[:, 0], #cls, NOT from ff layer after last hidden state since it seems to be untrained in roberta
                        tf.reduce_mean(Q_outputs[:, 1:-1], axis=1), # pooled except CLS and SEP
                        tf.math.reduce_max(Q_outputs[:, 1:-1], axis=1),
                        tf.math.reduce_min(Q_outputs[:, 1:-1], axis=1),
                        tf.math.reduce_variance(Q_outputs[:, 1:-1], axis=1),
                        tf.math.reduce_logsumexp(Q_outputs[:, 1:-1], axis=1),
                        Q_outputs[:, -1] # sep, get from hidden state 
                        ],axis=1) 
        
        P_outputs = tf.concat([
                        P_outputs[:, 0], #cls, NOT from ff layer after last hidden state since it seems to be untrained in roberta
                        tf.reduce_mean(P_outputs[:, 1:-1], axis=1), # pooled except CLS and SEP
                        tf.math.reduce_max(P_outputs[:, 1:-1], axis=1),
                        tf.math.reduce_min(P_outputs[:, 1:-1], axis=1),
                        tf.math.reduce_variance(P_outputs[:, 1:-1], axis=1),
                        tf.math.reduce_logsumexp(P_outputs[:, 1:-1], axis=1),
                        P_outputs[:, -1] # sep, get from hidden state 
                        ],axis=1)

        Q_outputs = Dropout(0.10)(Q_outputs)
        P_outputs = Dropout(0.10)(P_outputs)

        Q_outputs = self.Q_ff_1(Q_outputs) 
        P_outputs = self.P_ff_1(P_outputs) 

        Q_outputs = self.Q_ff_2(Q_outputs) 
        P_outputs = self.P_ff_2(P_outputs) 

        dotProductMatrix = tf.linalg.matmul(Q_outputs, P_outputs, transpose_b=True, name='mm')

        return dotProductMatrix

这是我接受培训的错误消息

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-23-d78edec93dcb> in <module>()
      1 model.fit(train_datasetFinal,
      2         epochs=epochs,
----> 3         callbacks=callbacks)
      4 
      5 # else:

10 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
     64   def _method_wrapper(self, *args, **kwargs):
     65     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
---> 66       return method(self, *args, **kwargs)
     67 
     68     # Running inside `run_distribute_coordinator` already.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
    846                 batch_size=batch_size):
    847               callbacks.on_train_batch_begin(step)
--> 848               tmp_logs = train_function(iterator)
    849               # Catch OutOfRangeError for Datasets of unknown size.
    850               # This blocks until the batch has finished executing.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    578         xla_context.Exit()
    579     else:
--> 580       result = self._call(*args, **kwds)
    581 
    582     if tracing_count == self._get_tracing_count():

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    625       # This is the first call of __call__, so we have to initialize.
    626       initializers = []
--> 627       self._initialize(args, kwds, add_initializers_to=initializers)
    628     finally:
    629       # At this point we know that the initialization is complete (or less

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    504     self._concrete_stateful_fn = (
    505         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 506             *args, **kwds))
    507 
    508     def invalid_creator_scope(*unused_args, **unused_kwds):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2444       args, kwargs = None, None
   2445     with self._lock:
-> 2446       graph_function, _, _ = self._maybe_define_function(args, kwargs)
   2447     return graph_function
   2448 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2775 
   2776       self._function_cache.missed.add(call_context_key)
-> 2777       graph_function = self._create_graph_function(args, kwargs)
   2778       self._function_cache.primary[cache_key] = graph_function
   2779       return graph_function, args, kwargs

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2665             arg_names=arg_names,
   2666             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667             capture_by_value=self._capture_by_value),
   2668         self._function_attributes,
   2669         # Tell the ConcreteFunction to clean up its graph once it goes out of

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    979         _, original_func = tf_decorator.unwrap(python_func)
    980 
--> 981       func_outputs = python_func(*func_args, **func_kwargs)
    982 
    983       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    439         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    440         # the function a weak reference to itself to avoid a reference cycle.
--> 441         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    442     weak_wrapped_fn = weakref.ref(wrapped_fn)
    443 

/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    966           except Exception as e:  # pylint:disable=broad-except
    967             if hasattr(e, "ag_error_metadata"):
--> 968               raise e.ag_error_metadata.to_exception(e)
    969             else:
    970               raise

AttributeError: in user code:

    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:571 train_function  *
        outputs = self.distribute_strategy.run(
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/tpu_strategy.py:174 run  **
        return self.extended.tpu_run(fn, args, kwargs, options)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/tpu_strategy.py:867 tpu_run
        return func(args, kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/tpu_strategy.py:934 tpu_function
        padding_spec=padding_spec)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/tpu/tpu.py:893 replicate
        padding_spec=padding_spec)[1]
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/tpu/tpu.py:1280 split_compile_and_replicate
        outputs = computation(*computation_inputs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/distribute/tpu_strategy.py:896 replicated_fn
        result[0] = fn(*replica_args, **replica_kwargs)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:541 train_step  **
        self.trainable_variables)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py:1804 _minimize
        trainable_variables))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:521 _aggregate_gradients
        filtered_grads_and_vars = _filter_grads(grads_and_vars)
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1223 _filter_grads
        ([v.name for v in vars_with_empty_grads]))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/optimizer_v2/optimizer_v2.py:1223 <listcomp>
        ([v.name for v in vars_with_empty_grads]))
    /usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/ops.py:1123 name
        "Tensor.name is meaningless when eager execution is enabled.")

    AttributeError: Tensor.name is meaningless when eager execution is enabled.

0 个答案:

没有答案