主要问题:为什么在scipy.minimize
的最小化作用下,套索回归系数不会缩小为零?
我正在尝试使用scipy.minimize创建套索模型。但是,它仅在alpha为零时才起作用(因此仅像基本平方误差一样)。当alpha不为零时,它返回的结果更糟(损失更大),而系数都不为零。
我知道套索是不可微的,但是我尝试使用Powell优化程序,该程序应处理非微分损耗(也尝试过BFGS,该程序应处理非平滑性)。这些优化程序均无效。
为了对此进行测试,我创建了一个数据集,其中y是随机的(此处可重现),X的第一个特征恰好是y * .5,其他四个特征是随机的(此处也可重现)。我希望该算法将这些随机系数缩小为零,并仅保留第一个,但这没有发生。
对于套索损失函数,我使用的是this paper (figure 1, first page)中的公式
我的代码如下:
from scipy.optimize import minimize
import numpy as np
class Lasso:
def _pred(self,X,w):
return np.dot(X,w)
def LossLasso(self,weights,X,y,alpha):
w = weights
yp = self._pred(X,w)
loss = np.linalg.norm(y - yp)**2 + alpha * np.sum(abs(w))
return loss
def fit(self,X,y,alpha=0.0):
initw = np.random.rand(X.shape[1]) #initial weights
res = minimize(self.LossLasso,
initw,
args=(X,y,alpha),
method='Powell')
return res
if __name__=='__main__':
y = np.array([1., 0., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1.,
1., 1., 0.])
X_informative = y.reshape(20,1)*.5
X_noninformative = np.array([[0.94741352, 0.892991 , 0.29387455, 0.30517762],
[0.22743465, 0.66042825, 0.2231239 , 0.16946974],
[0.21918747, 0.94606854, 0.1050368 , 0.13710866],
[0.5236064 , 0.55479259, 0.47711427, 0.59215551],
[0.07061579, 0.80542011, 0.87565747, 0.193524 ],
[0.25345866, 0.78401146, 0.40316495, 0.78759134],
[0.85351906, 0.39682136, 0.74959904, 0.71950502],
[0.383305 , 0.32597392, 0.05472551, 0.16073454],
[0.1151415 , 0.71683239, 0.69560523, 0.89810466],
[0.48769347, 0.58225877, 0.31199272, 0.37562258],
[0.99447288, 0.14605177, 0.61914979, 0.85600544],
[0.78071238, 0.63040498, 0.79964659, 0.97343972],
[0.39570225, 0.15668933, 0.65247826, 0.78343458],
[0.49527699, 0.35968554, 0.6281051 , 0.35479879],
[0.13036737, 0.66529989, 0.38607805, 0.0124732 ],
[0.04186019, 0.13181696, 0.10475994, 0.06046115],
[0.50747742, 0.5022839 , 0.37147486, 0.21679859],
[0.93715221, 0.36066077, 0.72510501, 0.48292022],
[0.47952644, 0.40818585, 0.89012395, 0.20286356],
[0.30201193, 0.07573086, 0.3152038 , 0.49004217]])
X = np.concatenate([X_informative,X_noninformative],axis=1)
#alpha zero
clf = Lasso()
print(clf.fit(X,y,alpha=0.0))
#alpha nonzero
clf = Lasso()
print(clf.fit(X,y,alpha=0.5))
阿尔法零输出正确时:
fun: 2.1923913945084075e-24
message: 'Optimization terminated successfully.'
nfev: 632
nit: 12
status: 0
success: True
x: array([ 2.00000000e+00, -1.49737205e-13, -5.49916821e-13, 8.87767676e-13,
1.75335824e-13])
非零的alpha的输出具有更高的损耗,并且系数的非零如预期的那样为零:
fun: 0.9714385008821652
message: 'Optimization terminated successfully.'
nfev: 527
nit: 6
status: 0
success: True
x: array([ 1.86644474e+00, 1.63986381e-02, 2.99944361e-03, 1.64568796e-12,
-6.72908469e-09])
为什么随机特征的系数不缩小到零并且损失如此之大?
答案 0 :(得分:0)
这是可行的选择吗?
import numpy as np
from sklearn.linear_model import Lasso, Ridge
from sklearn.model_selection import GridSearchCV
y = np.array([1., 0., 1., 0., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 1., 0., 1., 1., 1., 0.])
X_informative = y.reshape(20, 1) * .5
X_noninformative = np.array([[0.94741352, 0.892991 , 0.29387455, 0.30517762],
[0.22743465, 0.66042825, 0.2231239 , 0.16946974],
[0.21918747, 0.94606854, 0.1050368 , 0.13710866],
[0.5236064 , 0.55479259, 0.47711427, 0.59215551],
[0.07061579, 0.80542011, 0.87565747, 0.193524 ],
[0.25345866, 0.78401146, 0.40316495, 0.78759134],
[0.85351906, 0.39682136, 0.74959904, 0.71950502],
[0.383305 , 0.32597392, 0.05472551, 0.16073454],
[0.1151415 , 0.71683239, 0.69560523, 0.89810466],
[0.48769347, 0.58225877, 0.31199272, 0.37562258],
[0.99447288, 0.14605177, 0.61914979, 0.85600544],
[0.78071238, 0.63040498, 0.79964659, 0.97343972],
[0.39570225, 0.15668933, 0.65247826, 0.78343458],
[0.49527699, 0.35968554, 0.6281051 , 0.35479879],
[0.13036737, 0.66529989, 0.38607805, 0.0124732 ],
[0.04186019, 0.13181696, 0.10475994, 0.06046115],
[0.50747742, 0.5022839 , 0.37147486, 0.21679859],
[0.93715221, 0.36066077, 0.72510501, 0.48292022],
[0.47952644, 0.40818585, 0.89012395, 0.20286356],
[0.30201193, 0.07573086, 0.3152038 , 0.49004217]])
X = np.concatenate([X_informative,X_noninformative], axis=1)
_lasso = Lasso()
_lasso_parms = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]}
_lasso_regressor = GridSearchCV(_lasso, _lasso_parms, scoring='neg_mean_squared_error', cv=5)
print('_lasso_regressor.fit(X, y)')
print(_lasso_regressor.fit(X, y))
print("\n=========================================\n")
print('lasso_regressor.best_params_: ')
print(_lasso_regressor.best_params_)
print("\n")
print('lasso_regressor.best_score_: ')
print(_lasso_regressor.best_score_)
print("\n=========================================\n")
_ridge = Ridge()
_ridge_parms = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3, 1e-2, 1, 5, 10, 20]}
_ridge_regressor = GridSearchCV(_ridge, _lasso_parms, scoring='neg_mean_squared_error', cv=5)
print('_ridge_regressor.fit(X, y)')
print(_ridge_regressor.fit(X, y))
print("\n=========================================\n")
print('_ridge_regressor.best_params_: ')
print(_ridge_regressor.best_params_)
print("\n")
print('_ridge_regressor.best_score_: ')
print(_ridge_regressor.best_score_)
print("\n=========================================\n")
答案 1 :(得分:0)